This book provides a detailed and practical overview of the development and use of immunoassays in many different areas. Immunoassays are analytical tests that utilise antibodies to measure the amount, activity or identity of an analyte. The book is designed to provide a critical and helpful insight into the subject and to give the user practical information that would be of assistance in assay format selection, antibody generation and choice of appropriate detection strategies. It comprises 12 chapters written by highly experienced researchers in the fields of antibody-based research, immunoassay development, assay validation, diagnostics and microfluidics.

Beginning with a comprehensive survey of antibodies, immunoassay formats and signalling systems, the book elucidates key topics related to the development of an ideal antibody-based sensor, focuses on the important topic of surface modification, explores key parameters in the immobilisation of antibodies onto solid surfaces, discusses the move to ‘lab-on-a-chip’-based devices and investigates the key parameters necessary for their development. Three of the chapters are dedicated to the areas of clinical diagnostics, infectious disease monitoring and food security, where immunoassay-based applications have become highly valuable tools. Next-generation immunoassays and the future of electrochemical-based detection systems are discussed. Furthermore, the book covers the application of optical detection systems (with a focus on surface plasmon resonance) in immunoassays and provides a compilation of pertinent, routinely used protocols, concurrently addressing problems that may be encountered during assay development.

Richard O’Kennedy is professor of biological sciences at Dublin City University (DCU). He is president of the London International Youth Science Forum and chairman of the Centre for Talented Youth. He represents Ireland and the Royal Irish Academy (RIA) on the Biosciences committee of the European Academies Science Advisory Council and is a member of the Industrial Research and Commercialisation Committee of Enterprise Ireland. Prof. O’Kennedy directs the Applied Biochemistry Research Group, internationally recognised for its expertise in antibody generation and immuno/biosensor assay development. He has a Google Scholar H-Index of 49, with ca. 9500 citations, 7 patents and multiple licenses, and many of his reagents and innovations have been licensed and commercialised. He has received many awards for research (Biochemistry Medal of the RIA, President’s Award for Research, 3 Fujitsu Awards for Innovation, Ireland’s Bioscience Lab of the Year, 2014), and teaching (President’s award, ECU, Outstanding Masters Programme Award, Graduate Ireland, 2011).

Caroline Murphy completed her PhD in biochemistry and immunology from Trinity College Dublin in 2010. She is now an experienced post-doctoral researcher in the areas of molecular diagnostics, immunoassays and microfluidics in Dublin City University. She received a Technology, Innovation and Development (TIDA) award, and National and International funding for her work involving the development of immunoassays/sensors towards harmful algal toxins. She is scientific advisor on ‘Marabox’, an FP7 EU grant, and has over 750 citations in Google Scholar.
Immunoassays
Immunoassays
Development, Applications and Future Trends

edited by
Richard O’Kennedy
Caroline Murphy
Contents

Preface xv
Glossary xvii

1 An Overview of Immunoassays 1
Caroline Murphy, Sarah Gilgunn, and Richard O’Kennedy

1.1 Introduction to Antibodies and Immunoassays 1
 1.1.1 Polyclonal Antibody Production 3
 1.1.2 Production of Monoclonal Antibodies 4
 1.1.3 Recombinant Antibody Fragments 5
 1.1.3.1 Production of recombinant antibodies by phage display technology 6

1.2 Types of Immunoassays 7

1.3 Choosing a Suitable Immunooassay Technique 9
 1.3.1 Detection of Target Analyte: An Immunometric Approach 9
 1.3.1.1 Direct immunoassay 9
 1.3.1.2 Indirect immunoassay 10
 1.3.1.3 Sandwich immunoassay 11
 1.3.2 Detection of Small Molecules Using a Competitive Approach 12

1.4 Signal Generation in Immunoassays 14
 1.4.1 Signal Generation 14
 1.4.1.1 Colourimetry as a method of immuno-detection 14
 1.4.1.2 Luminescence as a method of immuno-detection 18
 1.4.2 Nanomaterials, for Signal Generation and Immobilisation 21
Contents

1.5 Next Generation Signal Transduction Systems 23
 1.5.1 Electrochemical Transducers for Immunoassay Applications 24
 1.5.2 Nanomechanical Sensors/Piezoelectric Mass Sensors 24
 1.5.3 Optical Signal Transduction 27
1.6 Conclusions and Key Issues 27

2 Recombinant Antibodies for Diagnostic Applications: Design Considerations and Structural Correlates 37
 Stephen Hearty and Richard O’Kennedy
 2.1 Diagnostic Antibodies: Co-opting Natural Immunity 38
 2.2 Harnessing Natural Diversity 38
 2.3 Affinity 41
 2.4 Exploiting Synthetic Diversity in vitro 43
 2.4.1 Introducing Diversity 44
 2.4.2 Introducing Diversity: Affinity Maturation 46
 2.5 Paradigms Challenged 47
 2.6 Single-Domain Antibodies 49
 2.7 Conclusion 53

3 Surfaces and Immobilisation Strategies for Use in Immunoassay Development 59
 Chandra K. Dixit and Paul Conroy
 3.1 Introduction 60
 3.2 Tailoring Immunoassay Surfaces 63
 3.2.1 Surface Designing/Modulation and Customisation for Antibody Immobilisation and Immunoassay Development 64
 3.2.1.1 Precursor modulation and post-manufacture treatments for controlling the surface properties 64
 3.2.1.2 Grafting functional groups by physical and chemical methods 69
 3.3 Antibody Immobilisation 71
 3.4 Antibody Conjugation to Quantum Dots 75
3.5 Aspects and Case Studies of Antibody Immobilisation 76
3.6 Conclusions and Future Perspectives 80

4 Immunooassay Validation 89
Paul Leonard
4.1 Why Is Validation Necessary? 90
4.2 Assay Validation Overview 90
4.2.1 Planning ‘It Takes Time to Save Time’ 91
4.3 Assay Development 92
4.3.1 Immunogen for Antibody Production and Screening 95
4.3.2 Antibody Production 96
4.3.3 Assay Format 96
4.4 Pre-validation 97
4.4.1 Select Assay Reagents 97
4.4.2 Evaluate Assay Conditions 97
4.4.3 Define Calibration Model 98
4.4.4 Evaluate Selectivity and Specificity 99
4.4.5 Preliminary Estimates for LLOQ and ULOQ 100
4.4.6 Preliminary Estimates of Precision and Accuracy 101
4.4.7 Estimation of the Assay Limit of Detection (LOD) 104
4.4.8 Reference Method 107
4.4.9 Validation Samples and Method Definition 108
4.4.10 Evaluate Extraction Efficiency/Effects 108
4.5 Pre-study Validation 110
4.5.1 Stability 110
4.5.2 Evaluate Dilutional Linearity 111
4.5.3 Evaluate Assay Robustness and Ruggedness 112
4.5.4 Assay Validation Report and Documentation 112
4.6 Summary 113

5 Lab-on-a-Chip Immunooassay Systems 117
Barry Byrne and Louise M. Barrett
5.1 Introduction 118
5.2 Substrates Used for Microfluidic Chip Design 119
Contents

5.3 Microfluidic Channel Design and Fabrication 122
5.4 Analyte Delivery, Mixing and Washing 125
5.5 Antibody Integration 128
5.6 Lab-on-a-Chip–Based Immunodetection: Applications 132
5.6.1 Bacterial Pathogens and Toxins 132
5.6.2 Marine and Fungal Toxins 140
5.7 Disease Markers and Their Detection Using Microfluidics-Based Devices 145
5.8 Conclusions 148

6 Clinical Applications of Immunoassays 161
Karen Lawler and Gregor Kijanka
6.1 Clinical Specimen Analysis 162
6.2 Cardiovascular Disease 165
6.2.1 Ischemic Heart Disease and Cardiac Enzymes 165
6.2.2 Heart Failure and Brain Natriuretic Peptide 166
6.2.3 Serum Lipids and Lipoproteins 167
6.3 Respiratory Disease 168
6.3.1 Bacterial Respiratory Infections 168
6.3.1.1 Streptococcus pneumonia 168
6.3.1.2 Legionella species 169
6.3.1.3 Mycoplasma pneumonia 169
6.3.1.4 Haemophilus influenzae 170
6.3.1.5 Chlamydia pneumonia 170
6.3.2 Fungal Respiratory Infections 170
6.3.2.1 Aspergillus 170
6.3.3 Viral Respiratory Infections 171
6.3.3.1 Influenza A and B 171
6.3.4 Cystic Fibrosis 171
6.3.5 Pulmonary Embolism and D-Dimers 172
6.4 Endocrinology 173
6.4.1 Type 1 Diabetes Mellitus 173
6.4.2 Thyroid Disease 173
6.4.3 Adrenal Hormone and Cushing’s Syndrome 174
6.5 Rheumatology 175
6.5.1 Rheumatoid Arthritis 175
6.5.2 Systemic Lupus Erythematosus 176
6.5.3 Systemic Sclerosis 177
6.5.4 Sjögren’s Syndrome 177
6.5.5 Vasculitis 178
6.5.6 Dermatomyositis and Polymyositis 178

6.6 Oncology 179
6.6.1 Alpha-Fetoprotein 179
6.6.2 Prostate-Specific Antigen 180
6.6.3 Carbohydrate Antigens 181
 6.6.3.1 CA 125 181
 6.6.3.2 CA 15-3 and CA 27-29 181
 6.6.3.3 CA 19-9 181
6.6.4 Carcinoembryonic Antigen 181
6.6.5 Beta-Human Chorionic Gonadotrophin 182
6.6.6 Antibody-Associated Paraneoplastic Disease 182

6.7 Conclusion 183

7 Immunoassay-Based Detection of Infectious and Parasitic Diseases 191
 Paul J. Conroy 192
7.1 Introduction 193
7.2 Current Technologies for the Detection of Infectious Diseases in Humans 196
 7.2.1 Appropriate Technologies 197
 7.2.2 Human Immunodeficiency Virus (HIV) 198
 7.2.3 Tuberculosis 199
 7.2.4 Malaria 199
 7.2.5 Rapidly Spreading Infectious Agents 200
7.3 Challenges in Detecting Infectious and Parasitic Diseases 202
 7.3.1 Current Research into New Platform Development 202
 7.3.2 Current Antibodies for Infectious Disease Agents 203
7.4 Future Trends 207
 7.4.1 Rapid Assay Development: Antibodies 207
 7.4.2 Rapid Assay Development: Microfluidics and Nanotechnology and Their Relevance to Infectious Disease Detection 209
7.5 Conclusion 212
8 Detection of Food, Agricultural and Aquatic Contaminants 221
Marie Le Berre, Caroline Viguier, Caroline Murphy, and Niamh Gilmartin

8.1 Immunoassays Used in the Detection of Contaminants in Food 222
8.1.1 Foodborne Pathogens 222
8.1.2 Foodborne Toxins 227

8.2 Immunoassays in the Agricultural Environment 228
8.2.1 Immunoassays in Animal Feedstuffs 228
8.2.2 Immunoassays for Agricultural Veterinary Infections 232
8.2.3 Immunoassays Used to Assist in the Management of Reproduction in Animals 233

8.3 Immunoassays in Aquatic Environments 235
8.3.1 Detection of Marine Toxins 235
8.3.2 Detection of Freshwater Algal Toxins 239

8.4 Conclusion 242

9 Next-Generation Immunoassays 255
Valerie Fitzgerald and Paul Leonard

9.1 History of the Immunoassay 255
9.2 Evolution of the Immunoassay 256
9.3 Improvements in Antibody Development 258
9.3.1 Antibody Engineering 259
9.3.1.1 Phage display 260
9.3.1.2 Cell display methods 261
9.3.1.3 In vitro display technologies 263
9.3.2 Mutagenesis Strategies 264

9.4 Improvements in Platform and Detection Methods 266
9.4.1 Nanomaterials 266
9.4.2 Nucleic Acid-Based Signal Amplification 269
9.4.2.1 Immuno-PCR 269
9.4.2.2 Hybridisation chain reaction 271
9.4.2.3 Loop-mediated isothermal amplification 272
9.4.3 Optical Detection Methods 273

9.5 Current Immunoassay Trends 275
9.5.1 Point-of-Care (POC) Diagnostics 275
9.5.2 Microfluidics
9.6 Commercially Available Novel Immunoassays
9.7 Conclusion

10 Recent Trends and the Future of Electrochemical Immunoassay Systems
Frank Davis and Seamus Higson

10.1 Introduction to Electrochemical Immunoassays
10.2 Electrochemical Immunoassays
 10.2.1 Principle of Electrochemical Immunoassay
 10.2.2 Labelled Immunoassay Methods
 10.2.3 Label-Free Methods
10.3 Use of Nanomaterials
 10.3.1 Metal Nanoparticles
 10.3.2 Carbon Nanotubes
 10.3.3 Other Nanomaterials
10.4 Microarrays and Nanoarrays
10.5 Multiple Target Detection
10.6 Imaging of Arrays and Scanning Electrochemical Microscopy (SECM)
10.7 Conclusions and Future Prospects

11 Optical Signal Transduction with an Emphasis on the Application of Surface Plasmon Resonance (SPR) in Antibody Characterisation
Caroline Murphy, Aoife Crawley, Hannah Byrne, Kara Moran, Jenny Fitzgerald, and Richard O’Kennedy

11.1 The Fundamentals of Optical Signal Transduction
11.2 Description and Evaluation of the Use of Surface Plasmon Resonance in Immunoassays
 11.2.1 Optical Platforms Used in SPR
11.3 Fundamental Steps in SPR-Based Analysis
11.4 Surfaces Used in SPR Immunoassay Development
 11.4.1 Dextran-Coated Sensor Chips: The Carboxymethylated Series
 11.4.2 Sensor Chip with Pre-immobilised Surfaces: Capture Applications
 11.4.3 Sensor Chips for Specialised Applications

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.2 Microfluidics</td>
<td>276</td>
</tr>
<tr>
<td>9.6 Commercially Available Novel Immunoassays</td>
<td>278</td>
</tr>
<tr>
<td>9.7 Conclusion</td>
<td>282</td>
</tr>
<tr>
<td>10.1 Introduction to Electrochemical Immunoassays</td>
<td>292</td>
</tr>
<tr>
<td>10.2 Electrochemical Immunoassays</td>
<td>294</td>
</tr>
<tr>
<td>10.2.1 Principle of Electrochemical Immunoassay</td>
<td>295</td>
</tr>
<tr>
<td>10.2.2 Labelled Immunoassay Methods</td>
<td>296</td>
</tr>
<tr>
<td>10.2.3 Label-Free Methods</td>
<td>298</td>
</tr>
<tr>
<td>10.3 Use of Nanomaterials</td>
<td>301</td>
</tr>
<tr>
<td>10.3.1 Metal Nanoparticles</td>
<td>301</td>
</tr>
<tr>
<td>10.3.2 Carbon Nanotubes</td>
<td>303</td>
</tr>
<tr>
<td>10.3.3 Other Nanomaterials</td>
<td>306</td>
</tr>
<tr>
<td>10.4 Microarrays and Nanoarrays</td>
<td>307</td>
</tr>
<tr>
<td>10.5 Multiple Target Detection</td>
<td>310</td>
</tr>
<tr>
<td>10.6 Imaging of Arrays and Scanning Electrochemical Microscopy (SECM)</td>
<td>312</td>
</tr>
<tr>
<td>10.7 Conclusions and Future Prospects</td>
<td>314</td>
</tr>
<tr>
<td>11.1 The Fundamentals of Optical Signal Transduction</td>
<td>328</td>
</tr>
<tr>
<td>11.2 Description and Evaluation of the Use of Surface Plasmon Resonance in Immunoassays</td>
<td>330</td>
</tr>
<tr>
<td>11.2.1 Optical Platforms Used in SPR</td>
<td>333</td>
</tr>
<tr>
<td>11.3 Fundamental Steps in SPR-Based Analysis</td>
<td>335</td>
</tr>
<tr>
<td>11.4 Surfaces Used in SPR Immunoassay Development</td>
<td>336</td>
</tr>
<tr>
<td>11.4.1 Dextran-Coated Sensor Chips: The Carboxymethylated Series</td>
<td>337</td>
</tr>
<tr>
<td>11.4.2 Sensor Chip with Pre-immobilised Surfaces: Capture Applications</td>
<td>337</td>
</tr>
<tr>
<td>11.4.3 Sensor Chips for Specialised Applications</td>
<td>340</td>
</tr>
</tbody>
</table>
11.4.4 Functionalisation of SPR Surfaces 341
11.4.5 The Use of Reference/Control Surfaces in SPR Immunoassays 343
11.5 Determination of Kinetic Parameters between Binding Partners Using SPR 344
11.6 Immobilisation of Ligands onto Sensor Surfaces 347
11.6.1 Electrostatic Pre-concentration of the Protein onto the Sensor Chip 348
11.7 Regeneration of Surfaces 348
11.8 Advances in SPR Immunoassays 349
11.9 Conclusions 353

12 Protocols for Key Steps in the Development of an Immunoassay 361
Caroline Murphy and Richard O’Kennedy
12.1 Introduction: Immunoassay Protocols 361
12.2 Preparation of Sample Analyte from Complex Matrices 363
12.3 Purification of Antibodies 364
 12.3.1 Purification of Antibodies by Chromatography 366
 12.3.2 Antibody Storage Considerations 371
 12.3.3 Antibody Conjugation 372
 12.3.3.1 Conjugation of quantum dots to antibodies 376
 12.3.4 Preparation of Biotinylated Antibodies 379
12.4 Protein Aggregation 382
 12.4.1 Prevention of Protein Aggregation 382
12.5 Immunoassay Optimisation 384
 12.5.1 Immunoassay Buffers 384
 12.5.2 Decreasing Background Signal 384
 12.5.3 Coating Buffer 385
 12.5.4 Inclusion of Wash Steps 386
 12.5.5 Blocking of Non-specific Reaction Sites 386
 12.5.6 Checkerboard Titration for Optimisation of ELISA Components 388
 12.5.7 Introduction of Appropriate Positive and Negative Controls into the Assay Protocol 390
12.5.7.1 Use of a spiked control 391
12.5.7.2 Standard curve 391
12.5.8 Immobilisation Strategies for Biomolecules onto Solid Surfaces 391
12.6 What Type of Immunoassay to Choose? 395
 12.6.1 Enzyme-Linked Immunosorbent Assay (ELISA) 395
 12.6.1.1 Binding of capture protein/antibody to the surface 395
 12.6.2 Commonly Used ELISA Protocols 396
 12.6.3 Fluorescence-Linked Immunosorbent Sandwich Assay (FLISA) 405
 12.6.4 Time-Resolved Fluorescence Immunoassay 406
 12.6.5 Fluorescence Polarisation Immunoassay (FPIA) 408
 12.6.6 Fluorescence Resonance Energy Transfer (FRET) Immunoassay 410
12.7 Surface Plasmon Resonance Protocols 411
12.8 Trouble Shooting 418
 12.8.1 Binding of Protein to Surfaces 418
 12.8.2 ELISA Trouble Shooting 419
12.9 Summary 420

Index 425
Preface

Immunoassays are analytical tests that utilise antibodies to measure the amount, activity or identity of an analyte. The concept behind this book is to provide a detailed and practical overview of the development and use of immunoassays in many different areas. It is designed to provide a critical and helpful insight into the subject and to give the user practical information that may be of assistance in assay format selection, antibody generation/selection and choice of appropriate detection strategies. This book comprises 12 chapters written by highly experienced researchers in the fields of antibody-based research, immunoassay development, assay validation, diagnostics and microfluidics.

Chapter 1 is a comprehensive survey of antibodies, immunoassay formats and signalling systems. Chapter 2 elucidates key topics related to the development of an antibody-based sensor. Chapter 3 focuses on the important topic of surface modification and explores key parameters in the immobilisation of antibodies onto solid surfaces. Chapter 4 provides a detailed account of what is involved in immunoassay validation. Chapter 5 discusses the move to ‘lab-on-a-chip’-based devices and investigates the key parameters necessary for their development. Chapters 6, 7 and 8 are dedicated to the areas of clinical diagnostics, infectious disease monitoring and food security, where immunoassay-based applications have become highly valuable tools. The future of immunoassays and electrochemical-based detection systems are discussed in Chapters 9 and 10. Chapter 11 concentrates on the use of optical detection systems (with a focus on surface plasmon resonance) in immunoassays. Finally, Chapter 12 is a compilation of important, routinely used, immunoassay protocols and addresses problems that may be encountered during assay development.
Preface

We would like to sincerely thank all the authors involved, the Applied Biochemistry Group for their help reviewing the chapters and Garvan Doherty, from the Biomedical Diagnostics Institute, for his help in developing the images used in the book.

The support of the publishers and their staff in relation to the initiation, evolution and execution of the text and their patience is gratefully acknowledged.

The financial support of Dublin City University, the Biomedical Diagnostics Institute and Science Foundation Ireland through Grant No. 10/CE/B1821 and 14/IA/2646 was vital for the completion of this work.

Finally, Caroline would like to thank her family, Mary, Claire, Aisling, Rosemary, Pauric, Dicky, her husband George and her daughter Fia for all their support, and Richard would like to thank his family, Kristina, Molly and Jack, for their support and enduring patience during the preparation of this book.

Caroline Murphy
Richard O’Kennedy
January 2017
Glossary

If words are not explained at first sight in the book, they are highlighted in bold and are explained in the glossary.

AC impedance Alternating current impedance is a measure of the opposition to the flow in an AC electrical current.

Accuracy Accuracy is a measure of the closeness of agreement of a test result obtained by an analytical method to its theoretical true value, or the accepted reference/standard value.

Affinity The affinity of an antibody refers to its ability to bind to the target antigen. It is a function of how well the antigen fits the binding site of the antibody.

Affinity ceiling Antibody recognition is thought to have an upper boundary for optimal affinity under natural biological conditions. This is called an affinity ceiling. Natural equilibration dissociation constant (K_D) is considered to be in the order of 10^{-8} to 10^{-10}.

Amino acids Amino acids are organic compounds that are composed of an amine (–NH$_2$) group and carboxyl (–COOH) group. They are the building blocks of proteins. In proteins, specific amino acids are linked together as if in a chain, and when folded, the tertiary structure makes up a protein.

Amperometric Amperometric analytical signalling systems operate when a current is created as a result of redox reactions at a sensor surface. They rely on either the release or consumption of electrons during these reactions.

Analyte Any chemical or substance under analytical scrutiny.

Anthelmintics Anthelmintics are a class of drugs used to treat infections with parasitic worms (helminths) from the body. Tapeworms, roundworms and flukes are classified as helminths.
Antibacterials See antibiotics.

Antibiotics Antibiotics are also known as antibacterials and are types of medication that destroy or slow down the growth of bacteria.

Antibody An antibody, also known as immunoglobulin, is an important part of the immune system. Most antibodies are Y-shaped molecules that recognise the presence of invading species such as viruses, bacteria, fungi, parasites and many more. Antibodies recognise these invasive agents through their antigen binding sites and signal to initiate an immune response via their fragment crystallisable (Fc) regions.

Antibody-based latex particle agglutination test (LAT) LAT utilises latex particles coated with antibodies or antigens to detect their counterparts through immunoprecipitation of the latex particles to form quantifiable aggregates in the presence of the analyte in the sample.

Anti-idiotype This is an antibody that binds to the antigen-combining site of another antibody.

Assay An assay is a qualitative or quantitative scientific test to measure the amount, functional activity or identity of an analyte. An immunoassay incorporates antibodies into key steps for the quantitation of the target analyte.

Autoantibody An antibody produced by the immune system targeting the body’s own proteins as opposed to proteins originating from external pathogens. Autoantibodies are involved in the pathogenesis of autoimmune diseases and are also found in sera of cancer patients.

Autoantigen A ‘self’ antigen; any host component that evokes an immune response by the host.

Batch Synonymous with ‘run’. A set of standard curve calibrators, validation samples, and/or quality control samples, and/or study samples that are analysed in a single group.

Bias Systematic difference between a measured test result and the theoretical true value (nominal). Bias is expressed either as a relative error (%RE) or as a ratio (%recovery).

Biomarker The term biomarker refers to a broad subcategory of molecules indicative of the presence of a disease (examples of which include proteins, genes or other molecules). They provide
objective indications of a medical state, which can be measured with a high degree of accuracy and reproducibility. They help to identify the presence or progress of disease or the effects of treatment.

Calibration curve A functional relationship between the analyte concentration in the standards (calibrators) and the measured response. The calibration curve is used to estimate the analyte concentration in test samples by dose interpolation. A calibration curve is synonymous with a standard curve.

Calibrator A volume of matrix spiked with the analyte of interest at a predetermined concentration using a well-characterized reference material.

Carbon nanotubes Are tube shaped molecules composed of carbon atoms that have a diameter on a nanometer scale. They can have either ‘metal or semiconductor-like’ properties and can be generated as single-walled nanotubes (SWNTs), multi-walled nanotubes (MWNTs) or double-walled nanotubes (DWNTs).

Coefficient of variation (CV) A quantitative measure of precision expressed relative to the mean result (also referred to as the relative standard deviation).

Competitive immunoassay A competitive immunoassay is one in which free analyte competes with immobilized analyte for antibody binding or where antibody in the matrix competes with labelled antibody for binding to an immobilized cognate antigen.

Confirmation assay A secondary assay, following a screening assay, which confirms the result (and may include assessment of specificity and/or titre).

Cross-validation Validation that utilises the use of two or more bioanalytical methods within the same study.

Cut-off point The cut-off point of the assay is the level of response of the assay at or above which a sample is defined to be positive and below which it is defined to be negative.

Direct antigen testing (DAT) A rapid antibody-based test that utilises direct antigen binding to identify pathogens such as *Mycobacterium tuberculosis* or influenza virus antigens.

Diagnostic A diagnostic is a tool used to identify/characterise a particular disease from its signs and symptoms.
Glossary

Dialysis/dialyse Dialysis is a diffusion-based process whereby larger soluble molecules are separated from smaller ones. It generally employs a differentially permeable membrane that achieves the separation based on size.

Diffraction grating Can separate light into its constituent wavelengths.

Dilutional linearity A condition in which dilution of a spiked sample does not result in biased measurement of the analyte concentration. For example, when a spiked sample is serially diluted to give a set of samples having analyte concentrations that fall within the quantitative range of the assay, the entire set of dilutions can be measured with acceptable accuracy.

EC50 An abbreviation for the ‘concentration necessary to produce a response of 50%’. For a competitive assay, the EC50 is the concentration of the analyte that is necessary to produce a 50% displacement of the tracer. For a non-competitive assay, the EC50 is the concentration of analyte necessary to produce a response of 50% or one-half of the observed maximum of binding.

Electrochemistry/Electrochemical reaction Electrochemistry is the production of an electric current during a chemical reaction. The most common type of electrochemical reaction used in biotechnology is the reduction/oxidation reaction or redox reaction during which electrons are transferred between two interacting species.

Enzyme-linked immunosorbent assay (ELISA) An enzyme-linked immunosorbent assay (ELISA) uses the basic immunological concept of an antigen binding to its specific antibody, allowing for the detection of antigens such as proteins, peptides, hormones or antibodies in a fluid sample or in tissue. ELISAs are commonly used as diagnostic tools in medicine and as quality control measures in various industries; they are also used as analytical tools in biomedical research for the detection and quantification of specific antigens or antibodies in a given sample.

Enzyme immunoassay (EIA) Synonymous with ELISA; used for the detection and quantification of specific antigens or antibodies
in a given sample through enzymatic colour or fluorescence changes.

Epitope An epitope is an area on an antigen that is recognised by antibodies of the immune system. An epitope can be either conformation-based (on the three-dimensional structure of the antigen's antigenic region) or linear (where an antibody recognises a continuous length of **amino acids** or other constituent components).

Evanescent wave An evanescent wave is an electrical wave that decays exponentially away from the surface interface where it was formed.

Factorial experiments A multivariate approach where two or more variables are varied simultaneously to achieve an optimal solution after taking into account the interaction between these variables. This approach is typically more efficient than one-factor-at-a-time for optimising assays and/or when analysing multiple variables of an assay that are interdependent.

False negative Negative test result from a truly positive sample.

False positive Positive test result from a truly negative sample.

Fluorometric assay An assay that relies on the presence of increased fluorescence or a change in the amount present as a means of quantification.

Four-parameter logistic (4PL) A versatile function that is recognized as the 'reference standard' for function fitting the mean concentration response for immunoassays. The function is defined by the equation

\[
E(Y) = D + \frac{(A - D)}{[1 + (X/C)^B]}
\]

where \(E(Y)\) is the expected response; \(X\), concentration; \(A\), response at zero concentration; \(D\), response at infinite concentration; \(C\), concentration resulting in a response halfway between \(A\) and \(D\) (ED\(_{50}\)); and \(B\), slope parameter that is typically near 1.0.

Fractional factorial experiments A type of multi-factorial experiment in which only a subset of factor-level combinations is tested. These experiments are very useful for screening a large number of factors prior to optimising the most important factors.

Full validation A validation that includes the evaluation of accuracy, precision, curve-fitting (model assessment), sensitivity, specificity, stability, etc.
Functionalisation (surface modification) Functionalisation, also known as surface modification, is the act of changing the surface of a material by altering its chemical characteristics, generally to enhance its ability to bind biomolecules or resist fouling.

Gold nanoparticles Gold nanoparticles (GNPs) or colloidal gold are nano-sized (1–100 nm) particles of gold that are in suspension. Depending on their size, shape, surface chemistry and aggregation properties they produce different optical and electrical properties; as a result of this, they are widely used in sensors.

Gravimetric sensors These are a type of sensor that can detect changes in analyte concentration on the basis of changes in mass.

Hapten A hapten is a small molecule that is of itself incapable of stimulating an immune response (i.e. it is not immunogenic). To overcome this, it is tightly linked to a carrier molecule (most often a protein) by a covalent bond. When used for immunisation purposes, this hapten carrier complex stimulates the immune system and subsequently the production of antibodies.

Hook effect Describes an artefact seen when an analyte is present in very high concentration, beyond the dynamic range of the method. This excess amount cannot be measured accurately and generates spuriously low results.

Hybridoma technology Antibody-producing B-lymphocytes are fused to continuously multiplying cancer cells (myelomas) to generate a hybrid cell or hybridoma. It is used for the continuous production of monoclonal antibodies.

Immunoassay See assay.

Immunodepletion Refers to the removal of a target using anti-target antibodies.

Immunodepletion assay A form of confirmation assay wherein the target (anti-product antibody) is specifically depleted by inhibition of reactivity during a pre-incubation step with an excess of product. It demonstrates the presence of antibodies that bind to the product.

Immunosensor An immunosensor is an analytical device that incorporates an antibody as a biological recognition element.
and links the binding event that occurs between an antibody and an antigen with a physiochemical detector that signals the presence of a target molecule.

Incoupling This is a resonance phenomenon that occurs at a precise angle of incidence. It is dependent on the refractive index (RI) of the medium covering the surface of a waveguide.

Interference Presence of entities in samples that prevent the target analyte from being detected or accurately quantified. It is a significant bias in the measured analyte concentration due to the effect of another component or properties of the specimen or matrix.

Intermediate precision Precision of repeated measurements within a laboratory, taking into account all relevant sources of variation affecting the results (runs, days, analysts, equipment, reagents, etc.). Intermediate precision is also termed inter-assay or inter-batch precision.

Isoelectric point The isoelectric point of a protein or molecule is the point, where at a certain pH, the protein or molecule has no net charge. In a buffer with a pH less than the pI of the protein or molecule under consideration, the net charge of the protein will be positive. In a buffer with pH greater than the pI, the net charge of the protein will be negative.

Lab-on-a-chip Such devices integrate a panel of laboratory functions on a single microfluidic device, permitting for example, immunoassays to be performed using reduced sample volumes, and without the requirement for multiple platforms.

Ligand-binding assay A type of assay format that depends on the specific binding of an analyte to another molecule, usually a macromolecule (biopolymer). This format typically involves reversible non-covalent interactions governed by the laws of mass action.

Limit of detection (LOD) Lowest concentration of analyte for which the response can be reliably distinguished from background noise.

Linearity Ability of the analytical method within a specified concentration range to obtain test results that are proportional to the concentration of the analyte in the test sample.
Lower limit of quantitation (LLOQ) The lowest concentration of analyte that has been demonstrated to be measurable with acceptable levels of accuracy (mean bias) and precision.

Macromolecule Macromolecules are commonly biopolymers that have the potential to provoke an immune response. Due to their inherent molecular complexity, macromolecules are generally more difficult to characterize than conventional small molecules.

Magnetoresistance Refers to a change in electrical resistance in metal or a semiconductor when it is subjected to a magnetic field.

Mass spectrometry (MS) An analytical method used to identify small molecules, proteins, lipids and others substances through changes in their mass-to-charge ratios which are introduced by an ion source and analysed in a mass analysis detector.

Matrix Effect Interference in an assay that is caused by adding the sample matrix. Commonly refers to analytical interference produced by factors other than those that have physicochemical similarity to the analyte.

Matrix The type of environment (e.g. serum, plasma or other biological fluid) in which the target (antibody or analyte) is present.

Microarray Microarrays are two-dimensional high-throughput tests used to identify binding partners to a sample of interest. They are composed of multiple microscopic spots that can be made of, for example, DNA, tissues, cells, proteins or antibodies to formulate the respective microarrays. A biological sample of unknown content is applied to the microarray and binders can be identified using dyed probes or tagged antibodies.

Microfluidics This is a multidisciplinary research field, which integrates biomedical engineering, physics, chemistry, biology and biotechnology. Microfluidic applications focus on the implementation of these disciplines in developing systems accommodating microlitre volumes of fluid as analytical samples.

Nanoarray A nanoarray is an array in which nano-sized objects such as proteins or cells are spotted onto a solid surface. They can use picolitre volumes of liquid. (See microarray.)
Nanomaterials These are materials that have at least one dimension in the nanometer scale (1–100 nm). Engineered nanomaterials have unique optical, magnetic and electrical properties. One such example is graphene; it is a lattice-based structure that is composed of carbon atoms. Graphene is being increasingly used in the area of biological sensors.

Nanoparticle A nanoparticle has all three dimensions in the nanoscale range (1–100 nm).

Negative control A negative control is one in which the sample is known to be devoid of a particular substance. By not including this substance it can be shown that the experimental conditions used would generate a negative result.

Nominal concentration A stated or theoretical concentration that may or may not differ from the true concentration.

Nonparametric methods A statistical approach that makes no assumptions about a distribution. Nonparametric methods are a class of methods that are used for a broad non-parameterized set of underlying distributions. Mean, median and percentiles of a sample are nonparametric estimates of the corresponding population quantities.

Nonspecific non-specificity Analytical interference caused by factors other than those that are related physicochemically to the analyte of interest, but which nevertheless affect the in vitro binding reaction. This type of non-specificity is commonly referred to as matrix effects.

Optimisation The process of developing an assay, prior to validation, wherein the variables affecting the assay are elucidated (e.g. antibody concentration, incubation time, wash cycles).

Parallelism A condition in which the dilution of test samples does not result in biased measurements of the analyte concentration. Thus, when a test sample is serially diluted to result in a set of samples having analyte concentrations that fall within the quantitative range of the assay, there is no apparent trend toward increasing or decreasing estimates of analyte concentration over the range of dilutions.

Parametric methods Parametric methods are a class of methods that assume a particular parameterized set of underlying distributions for the data (e.g. normal distribution). These
methods may use mean or robust estimates such as median within the framework of the assumed underlying parametric distribution such as the normal distribution.

Pathogen A pathogen is defined as a microorganism that causes, or can cause, disease. That is, a microbe that can cause damage in a host.

Photobleaching Photobleaching (also referred to as fading) is the photochemical alteration of a dye or a fluorophore molecule such that it permanently is unable to fluoresce.

Plasmons A plasmon is a quantum of plasma oscillation. A plasmon is a collective excitation of the electronic ‘fluid’ in a piece of conducting material and can be considered a quasiparticle (like ripples on the surface of a pond are a collective mode of the water molecules of the liquid).

Point-of-care Point-of-care is a form of medical testing that is performed at or near the site of patient care.

Polymerase chain reaction (PCR) An enzymatic method for the amplification of DNA that relies on melting and enzymatic replication of DNA through a series of thermal cycles.

Positive control Experiments have two major groups: the test subject and the control subject. A positive control is usually what researchers expect from the test, so it gives them something to compare. Hence, positive controls are used to validate the assay and demonstrate legitimacy of the test data.

Potentiometric A potentiometric immunosensor can be defined as a device incorporating a biological sensing element connected to an electrochemical potential transducer.

Precision The closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions. Precision may be considered at three levels: repeatability, intermediate precision and reproducibility.

Pre-study validation Procedures used prior to the analysis of study samples to establish that an analytical method is suitable for its intended application.

Pre-validation Assay development experiments conducted prior to formal validation in order to enhance immunoassay performance.
Quality controls A set of negative and positive controls included in each assay run to monitor, and maintain consistency of assay performance (system suitability).

Radioimmunoassay (RIA) An immunoassay that utilises radioactive substances as markers/labels for measurement. Either an antibody or an antigen may be labelled depending on the assay format. RIA is a very sensitive method, however, it is less frequently used due to safety issues.

Radioreceptor assays Radioreceptor assays are used to quantify receptor proteins present in tissue specimen through the addition of radiolabelled ligands specific to the receptor.

Range The interval between the upper and lower concentrations (amounts) of analyte in the sample for which it has been demonstrated that the analytical procedure has a suitable level of accuracy (mean bias), precision and linearity.

Recovery A measurement of the closeness of an observed result to its theoretical true value. Recovery is generally expressed as the percentage of the observed to the nominal (theoretical) concentration. ‘Spike recovery’ relates to cases where the theoretical concentration corresponds to the concentration of analyte added to a sample by the analyst.

Reference interval Values set for a clinical test defining a positive or negative meaning of a test result in terms of clinical decision making.

Reflection Reflection is the change in direction of a wavefront (such as light, sound or water waves) at an interface between two different media so that the wavefront returns into the medium from which it originated.

Refraction The change of direction of a wavefront in passing obliquely from one medium into another in which its wave velocity is different.

Regeneration (in terms of its use in surface plasmon resonance (SPR)) Regeneration of the surface of a chip used in SPR is carried out using a solution (which will be identified following a regeneration scout) that will remove all bound analyte while maintaining a fully functional surface.

Regression model A statistical model relating a dependent variable to one or more independent variables.
Relative error (RE) A quantitative measure of the closeness of an observed result to its theoretical true value, expressed as a percent relative difference from the nominal (theoretical) concentration %RE = ((Observed/Nominal) – 1) × 100.

Relative standard deviation A quantitative measure of precision (also referred to as the coefficient (RSD) of variation) expressed relative to the observed or theoretical (nominal) mean value %RSD = (SD/Mean) × 100. For repeatability, the SD is computed from replicate analyses within a single validation run. For intermediate precision, the SD is computed from replicate analyses over multiple validation runs within the same laboratory.

Repeatability Repeatability is the precision of repeated measurements within the same analytical run under the same operating conditions over a short interval of time. It is also termed intra-assay precision.

Reproducibility Precision of repeated measurements between laboratories; also termed inter-laboratory precision. Usually applies to collaborative studies that involve the standardisation of a bioanalytical method across multiple laboratories.

Resonant mirror A resonant mirror is an optical sensing system that probes the sensing surface to which an evanescent wave has been applied.

Response error relationship (RER) The relationship between the SD in replicate response values (e.g. counts per minute) and the mean response.

Robust estimates Robust estimates are estimates that down-weight the influence of extreme values in summarising the data via the use of median, trimmed mean, median absolute deviation, etc.

Robustness of the assay A measure of the capacity of an assay to remain unaffected by small changes in test conditions. Robustness provides an indication of the ability of an assay to perform under normal usage. Studies of the robustness of an assay measure the effect on the assay output of deliberate changes in assay inputs (incubation time, temperature, sample preparation, buffer pH) that can be controlled through specifications in the assay protocol.
Ruggedness The robustness/ruggedness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provides an indication of its reliability during normal usage.

Run A run represents a set consisting of standard curve (calibrators) and validation samples and/or quality control samples and/or study samples that are analysed together as a single group using the method to be validated. Run is synonymous with 'batch'.

Screening assay The primary assay that differentiates study samples into potential negatives or positives for the presence of anti-product antibodies.

Sedatives Sedatives are central nervous system (CNS) depressants, a category of drugs that work by slowing down brain activity resulting in drowsiness or relaxation.

Selectivity The extent to which a bioanalytical method can measure particular analyte(s) in a complex mixture without interference from other components of the mixture.

Sensitivity The ability of an assay to discriminate small changes in analyte concentration.

Solid-phase extraction (SPE) SPE is a basic sample preparation process by which compounds that are dissolved or suspended in a liquid mixture are separated from other compounds in the mixture according to their physical and chemical properties.

Specificity The ability to unequivocally measure the analyte in the presence of other components (often very closely related in terms of structure) that may be expected to be present in the biological specimen, including impurities, metabolites and endogenous matrix components.

Specific nonspecificity Analytical interference that is caused by substances in the test sample that have physicochemical similarity to the analyte of interest. Examples of such substances include metabolites, degraded forms of the analyte, isoforms, precursors and structural variants that differ with regard to post-translational modification.

System suitability System suitability comprises quantitative or qualitative criteria which ensures that a validated assay performs as expected in day-to-day assay runs. System suitability tests are used to verify that the reliability of the system is
adequate (in other words, remains in a validated state) for the analysis to be performed. This quality control system alerts the analyst when the assay is out of specification and ensures that the results obtained in a given run are meaningful.

Titre It is the reciprocal of the highest dilution of the sample that tests positive in the method. It is a common practice to express titer as the common logarithm of the highest dilution of the sample that tests positive in the method. This dilution must be clearly discernible above background.

Total error A concept that expresses the closeness of agreement between a measured test result and its theoretical true value. The term total error describes a combination of systematic (mean bias) and random (precision) error components. In other publications, the term total error is also referred to as accuracy, e.g. ISO definition.

Total internal reflection (TIR) When polarised light is shone through a prism onto a metal surface at a certain angle, light is reflected. By altering the angle at which the light passes through the prism, at a certain angle, total internal reflection (TIR) occurs.

Toxin A toxin is a poisonous substance. It is a specific product of the metabolic activities of a living organism and is harmful when introduced into biological tissues.

Tracer A tracer molecule is a labelled version of the target analyte. The tracer is frequently labelled with an enzyme or fluorophore which is capable of generating a detectable signal.

Upper limit of quantitation The highest concentration of analyte that has been demonstrated to be measurable with stated levels of accuracy (mean bias) and precision.

Validated range The interval of analyte concentrations over which the assay method has been validated. This interval includes concentrations from LLOQ to ULOQ.

Validation It is the confirmation, via extensive laboratory investigations, that the performance characteristics of an assay are suitable and reliable for its intended analytical use. It describes in mathematical and quantifiable terms the performance characteristics of an assay.
Validation samples Biological matrix samples spiked with the analyte of interest at predetermined concentrations. Alternatively, the analyte may be present endogenously in the biological matrix. A set of validation samples is used during pre-study validation to assess accuracy (mean bias) and precision.

4-6-20 QC rule A batch (run) acceptance criterion widely used in the pharmaceutical industry, which requires that 4 out of 6 QC results be within ±20% of their respective nominal value. Recently, this rule was modified for small-molecule chromatographic-based assays to require 67% (4 out of 6) of QC results to be within 20% of their respective nominal values; 33% of the results (not all replicates at the same concentration) may be outside the ±20% of the nominal value. In this book, this rule has been modified for the bioanalysis of macromolecules to require 4 out of 6 of QC results to be within ±30% of their respective nominal value with at least 50% of the QC results in range at each concentration level.