This impressive volume represents a landmark publication on the use of optical methods for deep biomedical imaging—a field that has been transformed by a variety of technical innovations in recent years. Editors Shi and Alfano have secured contributions from top names in the field, for an extensive compilation that comprehensively details the new state of the art, including forefront advances and developments. Fully covering theory, methods and applications, this lavishly illustrated book is destined to become a reference classic.

Prof. David L. Andrews
University of East Anglia, UK

I highly recommend this book as an introductory guide on optical imaging for students, scientists, engineers, and biomedical researchers who seek a better understanding of deep optical imaging in biological tissues or biomaterials in life science research.

Prof. Paras N. Prasad
State University of New York at Buffalo, USA

This is an excellent and up-to-date account of biomedical imaging research. Each topic is well written by subject matter experts, and the book is comprehensive and self-contained.

Dr. Daniel A. Nolan
Corning Inc., USA

Drs. Shi and Alfano have expertly put together an extremely strong collection of chapters written by leaders in the field. This book is a must-read for both active researchers and students.

Prof. Alan E. Willner
University of Southern California, USA

The use of light for probing and imaging biomedical media is promising for the development of safe, noninvasive, and inexpensive clinical imaging modalities with diagnostic ability. The advent of ultrafast lasers has enabled applications of nonlinear optical processes, which allow deeper imaging in biological tissues with higher spatial resolution. This book provides an overview of emerging novel optical imaging techniques, Gaussian beam optics, light scattering, nonlinear optics, and nonlinear optical tomography of tissues and cells. It consists of pioneering works that employ different linear and nonlinear optical imaging techniques for deep tissue imaging, including the new applications of single- and multiphoton excitation fluorescence, Raman scattering, resonance Raman spectroscopy, second harmonic generation, stimulated Raman scattering gain and loss, coherent anti-Stokes Raman spectroscopy, and near-infrared and mid-infrared supercontinuum spectroscopy. The book is a comprehensive reference of emerging deep tissue imaging techniques for researchers and students working in various disciplines.

Lingyan Shi is a research scientist at Columbia University, USA. Her current research focuses on metabolic imaging with stimulated Raman scattering microscopy. She was a research associate studying deep imaging and drug delivery in the brain at the Institute for Ultrafast Spectroscopy and Lasers, the City College of New York, USA, where she received her PhD in biomedical engineering.

Robert R. Alfano is a distinguished professor of science and engineering at the City College of New York. He has pioneered many applications of light and photonics technology to study biological, biomedical, and condensed matter systems using optical spectroscopy and imaging. He discovered and has used supercontinuum. Prof. Alfano is a fellow of the American Physical Society, the Optical Society, and the Institute of Electrical and Electronics Engineers.
Deep Imaging in Tissue and Biomedical Materials
Deep Imaging in Tissue and Biomedical Materials
Using Linear and Nonlinear Optical Methods

edited by
Lingyan Shi
Robert R. Alfano
Contents

Preface xvii

1. Overview of Second- and Third-Order Nonlinear Optical Processes for Deep Imaging 1
 Sangeeta Murugkar and Robert W. Boyd

 1.1 Introduction: Nonlinear Optical Contrast in Biological Imaging 1
 1.2 Classical Description of Nonlinear Light–Matter Interaction 4
 1.3 Second Harmonic Generation 5
 1.3.1 Quantum Mechanical Treatment of the Nonlinear Susceptibility 7
 1.3.2 Wave Equation Description of SHG 8
 1.3.3 Symmetry Breaking and SHG Signal in Biological Imaging 9
 1.4 Coherent Raman Scattering 9
 1.4.1 Classical Model of Spontaneous Raman Scattering 10
 1.4.2 Classical Model of Coherent Raman Scattering 11
 1.4.3 CARS Signal Generation in the Plane Wave Approximation 14
 1.4.4 SRS Microscopy 16
 1.5 Two-Photon Absorption 19
 1.6 Supercontinuum Generation 21
 1.6.1 Supercontinuum Generation in Bulk Media 21
 1.6.2 Supercontinuum Generation in Optical Fibers 24
 1.7 Conclusion 25
2. Complex Light Beams

Enrique J. Galvez

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Gaussian Beams</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 Fundamental Gaussian Beams</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1.1 The beam spot w</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1.2 Beam intensity</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.3 Wavefront</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.4 Gouy phase</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.5 Momentum</td>
<td>3</td>
</tr>
<tr>
<td>2.1.1.6 Gaussian-beam optics</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2 Hermite–Gaussian Beams</td>
<td>4</td>
</tr>
<tr>
<td>2.2.3 Laguerre–Gaussian Beams</td>
<td>4</td>
</tr>
<tr>
<td>2.2.3.1 Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>2.2.3.2 Interference</td>
<td>4</td>
</tr>
<tr>
<td>2.2.3.3 Angular momentum</td>
<td>4</td>
</tr>
<tr>
<td>2.2.4 Relations between Mode Families</td>
<td>4</td>
</tr>
<tr>
<td>2.2.5 Laboratory Methods of Production</td>
<td>4</td>
</tr>
<tr>
<td>2.2.5.1 Spiral phase plate</td>
<td>4</td>
</tr>
<tr>
<td>2.2.5.2 Holographic diffraction</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Non-Diffracting Optical Beams</td>
<td>4</td>
</tr>
<tr>
<td>2.3.1 Bessel Beams</td>
<td>4</td>
</tr>
<tr>
<td>2.3.2 Airy Beams</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Beams with Space-Variant Polarization</td>
<td>4</td>
</tr>
<tr>
<td>2.4.1 Polarization</td>
<td>4</td>
</tr>
<tr>
<td>2.4.2 Vector Beams</td>
<td>4</td>
</tr>
<tr>
<td>2.4.3 Poincaré Beams</td>
<td>4</td>
</tr>
<tr>
<td>2.5 Discussion and Conclusions</td>
<td>4</td>
</tr>
</tbody>
</table>

3. Gaussian Beam Optical Parameters in Multi-Photon Excitation Fluorescence Imaging

Lingyan Shi, Adrián Rodríguez-Contreras, and Robert R. Alfano

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Gaussian Beam Model</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Parameters in Multiphoton Imaging</td>
<td>8</td>
</tr>
</tbody>
</table>
4. The Optics of Deep Optical Imaging in Tissues Using Long Wavelengths
Steven L. Jacques
4.1 Introduction
4.2 Monte Carlo Simulations
4.2.1 Modeling Light Penetration into a Thick Tissue
4.2.2 Modeling the Shi Experiment of Narrow Transmission Using Thin Tissues
4.2.3 Summary of Results
4.3 Discussion
5. Light Propagation and Interaction in Highly Scattering Media for Deep Tissue Imaging
5.1 Introduction
5.2 Physics of Light Propagation for Imaging through a Highly Scattering Medium
5.2.1 Components of Transmitted Light from Scattering Media
5.2.2 Key Optical Parameters for Describing Light Propagation in Highly Scattering Media
5.2.3 Values of Key Optical Parameters for Human Tissues and Some Model Media
5.2.4 Optical Absorption Spectra of Key Chromophores in Tissues
5.3 Study of Ballistic and Diffuse Light Components
5.4 NIR Absorption
5.5 Transition from Ballistic to Diffuse in Model Scattering Media and Brain
5.6 Propagation and Scattering of Vortex Light Beam with Optical Angular Momentum in Turbid Media
5.7 Nonlinear Optical Subsurface Imaging of Tissues
5.8 Summary
6. **Application of Nonlinear Microscopy in Life Sciences** 157

 Zdenek Svindrych and Ammasi Periasamy

6.1 Introduction 158

6.2 Basic Principles of Multiphoton Microscopy 159

6.2.1 The Missing Cone Problem 159

6.2.2 Confocal Detection 160

6.2.3 Multiphoton Microscopy 161

6.2.4 Second Harmonic Generation 164

6.2.5 Absorption, Scattering and Wavefront Distortion in Tissues 165

6.3 Instrumentation for Nonlinear Microscopy 167

6.3.1 Light Sources in Nonlinear Microscopy 167

6.3.2 Point Scanning Nonlinear Microscopy 168

6.3.3 Multipoint Scanning Two-Photon Microscopy 170

6.3.4 Line Scanning Nonlinear Microscopy 170

6.3.5 Temporal Focusing 171

6.3.6 Two-Photon Selective Plane Illumination Microscopy 172

6.3.7 Superresolution Nonlinear Microscopy 172

6.3.8 Opto-Acoustic Intravital Imaging with Multiphoton Excitation 173

6.3.9 Multiphoton Endoscopy with GRIN Needle Lenses 173

6.3.10 Intravital 2P Microscopy with Optical Fibers 174

6.3.11 Fluorescence Lifetime Imaging Microscopy 176

6.4 Biological Applications of Nonlinear Microscopy 178

6.4.1 Application of Nonlinear Microscopy in Neuroscience 178

6.4.2 Nonlinear Microscopy in Cancer Research 180

6.4.3 Multiphoton Microscopy in Developmental Biology 181

6.4.4 Nonlinear Microscopy in Tissue Engineering 182
7. Smart Biomarker-Coated PbS Quantum Dots for Deeper Near-Infrared Fluorescence Imaging in the Second Optical Window 203

Takashi Jin, Akira Sasaki, and Yukio Imamura

7.1 Introduction 203
7.2 Optical Properties of Tissues 206
7.3 NIR Probes in First and Second Optical Window 208
7.4 Synthesis of Quantum Dots 210
 7.4.1 Highly Fluorescent PbS/CdS QDs 210
 7.4.2 Water-Soluble PbS QDs 212
 7.4.3 Dual Emitting PbS QDs 213
7.5 Non-Invasive Fluorescence Imaging 215
 7.5.1 Lymph System 215
 7.5.2 Cerebral Blood Vessels 217
 7.5.3 Breast Tumor 218
 7.5.4 Phagocytic Cell Migration 219
7.6 Future Prospects 220

8. Biomedical Applications in Probing Deep Tissue Using Mid-Infrared Supercontinuum Optical Biopsy 231

Angela B. Seddon

8.1 Mid-Infrared Electromagnetic Spectral Region 232
8.2 MIR Spectroscopy 233
8.3 Motivation and Aspiration 240
8.4 Raman Spectroscopy vis-à-vis MIR Spectroscopy for Medical Spectral Imaging 247
 8.4.1 Active and Passive MIR Chalcogenide Glass Fibers 252
8.5 MIR Light Molecular Spectral Imaging on Excised Tissue 253
8.5.1 MIR Light Spectral Imaging of Excised External Tissue 254
8.5.2 MIR Light Spectral Imaging of Excised Internal Tissue 258
8.5.3 MIR Light Coherent Imaging 264
8.6 How to Achieve the in vivo MIR Optical Biopsy 264
8.6.1 MIR Optical Components, Circuits and Detectors 265
 8.6.1.1 MIR optical components and circuits 265
 8.6.1.2 MIR detectors 265
8.6.2 MIR Light Sources: Traditional, Emerging and New 266
8.6.3 Progress on MIR Fiber Lasers: MIR Supercontinuum Generation 272
 8.6.3.1 MIR supercontinuum generation wideband fiber lasers 272
 8.6.3.2 MIR Narrowline Direct-Emission Fiber Lasers 279
8.7 Summary and Future Prospects 280

9. Light Propagation in Turbid Tissue-Like Scattering Media 295

Alexander Bykov, Alexander Doronin, and Igor Meglinski

9.1 Introduction 296
9.2 Light Scattering Characteristics of Biotissues 296
9.3 Radiative Transfer Equation 299
9.4 Approximations of the Radiative Transfer 300
 9.4.1 Small-Angular Approximation 301
 9.4.2 Diffuse Approximation 301
 9.4.3 Other Methods and Approximations 303
9.5 Monte Carlo Simulations 303
 9.5.1 Theoretical Basis for Modeling of Coherent Polarized Light Propagation in Scattering Media 305
 9.5.1.1 Linearly polarized light 306
 9.5.1.2 Circularly polarized light 309
9.5.2 Results of Modeling of Polarized Light Propagation

9.6 Summary

10. Overview of the Cumulant Solution to Light Propagation Inside a Turbid Medium and Its Applications in Deep Imaging Beyond the Diffusion Approximation

Min Xu, Cai Wei, and Robert R. Alfano

10.1 Introduction

10.2 Derivation of Cumulants to an Arbitrary Order

10.3 Gaussian Approximation of the Distribution Function

10.4 Applications of the Cumulant Solution of Radiative Transfer

10.4.1 Transport Forward Model for Optical Imaging

10.4.2 Early Photon Tomography

10.4.3 Non Medical Use of Retrieving Parameters of Water Cloud from CALIPSO Data

10.2 Summary

11. Deep Imaging of Prostate Cancer Using Diffusion Reconstruction of Banana Paths with Near Infrared Prostatoscope Analyzer

Yang Pu, Wubao Wang, Min Xu, James A. Eastham, and Robert R. Alfano

11.1 Introduction: Screening Cancer Using Light

11.2 Theoretical Formalism

11.2.1 Clean Image Synthesis

11.2.2 Numerical Target Marching

11.3 Experimental Setup and Methods

11.3.1 Design and Construction of Prostatoscope Analyzer

11.3.2 Test Model and Prostate Samples

11.4 Experimental Results

11.5 Discussion and Conclusion
12. Terahertz Propagation in Tissues and Its Thickness Limitation

Burcu Karagoz and Hakan Altan

12.1 Introduction 378
12.2 THz Generation and Detection 379
12.2.1 THz-TDS Method 380
12.2.2 Principles of THz-TDS 383
12.2.2.1 Measurements in transmission geometry 387
12.2.2.2 Measurements in reflection geometry 389
12.3 Soft Tissues 392
12.3.1 Brain Tissue 393
12.3.2 Skin, Muscle, and Adipose Tissue 393
12.3.3 Other Cancerous Tissue and Tumors 394
12.4 Hard Tissues 395
12.4.1 Bone 395
12.4.2 Cartilage 396
12.4.3 Teeth 397
12.5 Discussion and Conclusion 403

13. Detection of Brain Tumors Using Stimulated Raman Scattering Microscopy

Spencer Lewis and Daniel Orringer

13.1 Introduction 413
13.2 Background 414
13.3 Preliminary Validation of SRS Microscopy in Mouse Models 418
13.4 Preliminary Validation of SRS Microscopy in Human Tissue 420
13.4.1 Qualitative Histology 420
13.4.2 Quantitative Analysis of Tumor Infiltration with SRS 423
13.5 Other Intraoperative Microscopy Techniques in Neurosurgery 426
13.6 Clinical Implementation of SRS Microscopy and Future Work 427

14. Chemical and Molecular Imaging of Deep Tissue through Photoacoustic Detection of Chemical Bond Vibrations 431

Yingchun Cao and Ji-Xin Cheng

14.1 Introduction 431
14.2 Fundamentals of Vibrational Photoacoustic Imaging 433
 14.2.1 Principle of Vibrational Photoacoustic Imaging 433
 14.2.2 Overtone Absorption Spectra of Molecular Vibration 435
 14.2.3 Multispectral Photoacoustic Imaging 437
14.3 Modalities of Vibrational Photoacoustic Imaging 440
14.4 Applications of Vibrational Photoacoustic Imaging 442
 14.4.1 Breast Tumor Margin Assessment 443
 14.4.2 Intravascular Imaging of Atherosclerotic Plaque 445
14.5 Conclusions and Perspective 447

Idan Steinberg, Asaf Shoval, Michal Balberg, Adi Sheinfeld, Michal Tepper, and Israel Gannot

15.1 Introduction 458
15.2 Photoacoustics Quantitative Assessment of Deep Tissue Functionality 458
 15.2.1 Introduction 458
 15.2.2 Deep Tissue Photoacoustic Flow Measurements 460
15.2.3 Photoacoustic Characterization of Bone Pathologies for Early Detection of Osteoporosis 464

15.3 Acousto-Optic Imaging in Deep Tissue 469
15.3.1 Introduction 469
15.3.2 Acousto-Optics in Turbid Media 469
15.3.3 Acousto-Optic Measurement of Blood Flow 470
15.3.4 Acousto-Optic Measurements of Cerebral Oxygen Saturation and Blood Flow in Patients 472

15.4 Thermography for Assessment of Deep Tissue Tumor Volumes and Monitoring of Diffused Alpha Radiation Therapy 473
15.4.1 Introduction 473
15.4.2 Estimating Tumor Sizes from Thermographic Imaging 474
15.4.3 Comparison of DART vs. Inert via Thermography 475

15.5 Photothermal Techniques for Estimation of Superficial and Deep Tissue Functionality 477
15.5.1 Introduction 477
15.5.2 Photothermal Monitoring of Port-Wine-Stain Lesions 478
15.5.3 Photothermal Estimation of the Oxygenation Level of Deep-Tissue 479

16. Using the Transmission Matrix to Image Disordered Media 489

Matthieu Davy, Sylvain Gigan, and Azriel Z. Genack

16.1 Introduction 490
16.2 Distribution of Transmission Eigenvalues 491
16.2.1 Predictions 491
16.2.2 Measurements 494
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3 Eigenchannel Intensity Profiles</td>
<td>498</td>
</tr>
<tr>
<td>16.4 Wavefront Shaping for Imaging through Turbid Media</td>
<td>502</td>
</tr>
<tr>
<td>16.5 Applications to Biomedical Imaging</td>
<td>507</td>
</tr>
<tr>
<td>16.5.1 Photoacoustic Transmission Matrix</td>
<td>507</td>
</tr>
<tr>
<td>16.5.2 Endoscopic Imaging in Multimode Optical Fiber</td>
<td>508</td>
</tr>
<tr>
<td>16.6 Conclusion</td>
<td>509</td>
</tr>
</tbody>
</table>

Index

517
Preface

The use of light for probing and imaging biomedical media is promising for developing safe, noninvasive, and inexpensive clinical imaging modalities with diagnostic ability. The advent of ultrafast lasers enables the applications of nonlinear optical processes for deeper imaging into biological tissues with higher spatial resolution. The primary goals of this book are to review the fundamentals in biophotonics and to introduce emerging novel optical imaging techniques for deep tissue imaging. This book is intended to serve as an introductory guide of optical imaging for students and a reference for engineers and researchers who seek a better understanding of deep imaging in tissues.

The book consists of 16 chapters and is divided into three parts. Part I consists of eight chapters. The first chapter, by Murugkar and Boyd, reviews the basic concepts of nonlinear optical imaging, including second harmonic generation, coherent Raman scattering, and self-phase modulation. The next chapter, by Galvez, reviews the fundamentals and physical phenomena of complex light beams, including Gaussian beam, Bessel beam, Airy beam, and Poincare beam. The third chapter, by Shi and coworkers, inspects the properties of Gaussian beam optics in multiphoton fluorescence imaging. The deep imaging in the optical windows in near-infrared (NIR) and short-wave infrared (SWIR) from 700 nm to 2500 nm is reviewed by Jacques. Next, Alfano and coworkers review the salient properties of light propagation in highly scattering media and tissue. The application of non-linear microscopy to life science is reviewed by Svindrych and Periasamy, which is followed by the chapter on smart biomarker of quantum dots for NIR fluorescence imaging by Jin, Sasaki, and Imamura. The last chapter of Part I, by Seddon, describes biomedical applications for deep probing in materials by using mid-infrared supercontinuum laser and new optical fibers.

Part II reviews the theories and properties of light propagating in tissue. The first chapter, by Bykov, Doronin, and Meglinski,
overviews the theories and derived model for understanding light propagation in tissue-like media using Monte Carlo. The cumulant solution for light propagation in a turbid medium and its applications in deep imaging are reviewed in the following chapter by Xu, Cai, and Alfano. The final chapter of Part II, by Pu and coworkers, reviews the latest advancement of NIR scanning polarization imaging unit for prostate and presents an algorithm for diffusive image reconstruction using NIR banana pathways.

Part III presents recent technology developments in optical imaging and introduces the applications of different techniques for detecting disordered media and tissue. Karagoz and Altan introduce terahertz propagation in tissues and its limitation for thick tissue and present ways for use in smears and thin tissues for histology applications. The use of stimulated Raman scattering gain and loss microscopy in detecting brain tumor is then reviewed by Lewis and Orringer. The next chapter, by Cao and Cheng, introduces the technology of using new photoacoustics approach for deep imaging by detecting molecules’ vibrational overtone of chemical bonds. Gannot and coworkers presents multiple acoustic and thermal methods for light–tissue interaction for detecting deeper structures. The final chapter, by Davy, Gigan, and Genack, describes the properties of transmission matrix that determine the net transmission pathways in biomedical and condensed media, and its use for deep imaging.

As will be seen, much has been accomplished and reviewed in the book, but much remains for the future. Therefore, not only is this book an introduction to students in the field, but it proposes directions for researchers to adapt their own or to explore new optical technologies for deeper and better imaging in life science. We wish to thank all the invited authors, who presented very interesting and knowledgeable chapters.

Lingyan Shi
Robert R. Alfano
New York
January 2017