Beginning with a distillation of the Maxwell postulates, the authors move on first to the dielectric and magnetic response characteristics of actual materials and the band diagrams of diverse crystals, and then to a comprehensive overview of the electromagnetic characteristics of periodic distributions of matter in space. Homogenizable as well as nonhomogenizable periodic composites are described, along with a useful introduction to transformation optics.

Prof. Akhlesh Lakhtakia
Pennsylvania State University, USA

This entry-level book is suitable for everyone interested in understanding and mastering metamaterial design. Starting from the necessary details of basic principles of electromagnetism, it develops all the way to illustrate implementations of sophisticated numerical models and metamaterial homogenization approaches. Care is taken to underline physical insights behind mathematical notions.

Prof. Anatoly Zayats
King’s College London, UK

I enjoyed reading the book edited by Felbacq and Bouchitté. It is a solid reference for the rigorous modeling and design of metamaterials, with special emphasis on the mathematical aspects. It will serve as a great reference for the field and as an inspiration for scientists and students entering this area of research.

Prof. Andrea Alù
University of Texas, USA

This book covers the fundamental physics, mathematics, and numerics necessary for entering the field of metamaterials. It presents advanced mathematical methods in a self-consistent way, along with numerous examples. It focuses on electromagnetic waves but is also useful in studying other types of metamaterials. It presents the structure of Maxwell equations, discusses the homogenization theory in detail, and includes important problems on resonance. It has an entire section devoted to numerical methods (finite elements, scattering theory), which motivates a reader to implement them. It offers numerous interesting examples at the forefront of research. The book is not written as a collection of independent chapters but as a textbook with a strong pedagogical flavor.

Didier Felbacq is full professor at the University of Montpellier, France. He graduated in mathematics and physics from the Ecole Centrale de Marseille, France, and Aix-Marseille University, France, respectively. His current research activities cover electron transport in transistors for terahertz emission and detection, second harmonic emission in photonic crystals, excitons in 2D materials, quantum and thermal metamaterials, and modeling in biology.

Guy Bouchitté is full professor at the University of Toulon, France. He graduated from the Ecole Centrale Paris, France, and defended a doctoral thesis in mathematics at the University of Montpellier. He is a specialist in the mathematical theory of homogenization, of optimization, and of variational calculus, and his current research activity covers applications of mathematics to photonic crystals and metamaterials.
Metamaterials
Modeling and Design
Metamaterials
Modeling and Design

edited by
Didier Felbacq
Guy Bouchitté
Contents

Preface xi

SECTION I

ELEMENTS OF ELECTROMAGNETIC FIELDS IN MEDIA

1 General Introduction

Didier Felbacq, André Nicolet, and Frédéric Zolla

1.1 Maxwell Equations 3

1.1.1 Potential and Gauge Invariance 7

1.2 Maxwell Equations in the Fourier Domain 9

1.3 Field Created by Sources 10

1.4 Conservation Laws 10

1.5 A Framework with Differential Forms 12

1.6 Dispersion Relations 13

1.6.1 Introduction 13

1.6.2 Causality and Kramers–Kronig Relations 15

1.6.3 Super-Convergence and Sum Rules 21

1.6.4 Dispersion Relations Versus Mixing Laws 23

1.6.5 Group Velocity 24

2 A Review of Natural Materials and Properties in Micro-Waves and Optics

Bernard Gil

2.1 Introduction 27

2.2 Metals and Non-Metals 29

2.3 Examples of Band Structures for Monovalent Elemental Metals 31

2.4 Band Structures of Cubic Semiconductors 34
2.5 Semi-Classical Theory of the Dielectric Function in Crystals
 2.5.1 Intuitive Description 40
 2.5.2 Microscopic Theory of the Dielectric Constant 42
 2.5.3 Experimental Values of the Spectral Dependence of the Dielectric Constants of Semiconductors and Metals 44
2.6 Excitonic Effects 49
2.7 Influence of Doping and Alloying 54
2.8 Conclusion 56

3 From Microphysics to Mesophysics: Obtaining Effective Properties from Microscopic Behaviors 61
 Alexandru Cabuz
 3.1 Metamaterials and Scales 63
 3.2 Averaging—Time and Space 65
 3.2.1 The Spatial Average as Truncation 67
 3.3 Polarizability and Susceptibility 75
 3.3.1 The Master Equations: Electric and Magnetic 76
 3.4 Permittivity and Permeability: Index and Impedance 81
 3.4.1 The Negative Index of Refraction 83
 3.5 Periodic Media: Structural Nonlocality 91
 3.6 Conductors: Free Charge Nonlocality 96
 3.6.1 The Hydrodynamic Model 98
 3.7 Summary 101

4 Transformation Optics in a Nutshell 107
 André Nicolet
 4.1 Transformation Optics 107
 4.1.1 Geometrical Background 108
 4.1.2 Change of Coordinates in Maxwell’s Equations 110
 4.1.3 Geometric Transformation: Equivalent Material Principle 115
 4.1.4 Cylindrical Devices 118
 4.2 Superlens Illusion 123
 4.3 Cylindrical Cloaks of Arbitrary Cross Section 129
 4.4 Generalized Cloaking 132
 4.5 Numerical Modeling 133
SECTION II

GENERAL METHODS: WAVES IN PERIODIC MEDIA

5 Propagation in Periodic Media: Bloch Waves and Evanescent Waves

Didier Felbacq and Frédéric Zolla

5.1 Bloch Wave Theory
5.1.1 The Periodic Structure
5.1.2 Waves in a Homogeneous Space
5.1.3 Bloch Modes

5.2 Computation of Band Structures
5.2.1 Two-Dimensional Metamaterials

5.3 Periodic Waveguides
5.3.1 Bloch Modes
5.3.2 The Bloch Conditions
5.3.3 A Numerical Example
5.3.4 Direct Determination of the Periodic Part

5.4 Evanescent Waves
5.4.1 Introduction
5.4.2 Propagating and Non-Propagating Modes
5.4.3 Analysis of the Spectrum
 5.4.3.1 Decomposition of the field
 5.4.3.2 Cut wavelengths and classification of the conduction bands

6 Scattering Problems: Numerical Methods (FEM, Multiple Scattering)

Didier Felbacq, Frédéric Zolla, and André Nicolet

6.1 Finite Element Method
6.1.1 Introduction
6.1.2 Theoretical Developments
 6.1.2.1 Set up of the problem and notations
 6.1.2.2 From a diffraction problem to a radiative one with localized sources
 6.1.2.3 Quasi-periodicity and weak formulation
 6.1.2.4 Edge or Whitney 1-form second-order elements

Contents vii
6.1.3 Energetic Considerations: Diffraction Efficiencies and Losses 180
6.1.4 Accuracy and Convergence 182
 6.1.4.1 Classical crossed gratings 182
 6.1.4.2 Convergence and computation time 188
6.1.5 Conclusion 191
6.1.6 Electric Vector Field in Multilayered Stack Illuminated by a Plane Wave of Arbitrary Incidence and Polarization 192

6.2 Multiple Scattering 196
 6.2.1 Introduction 196
 6.2.2 Multiple Scattering for a Finite Collection of Objects 196
 6.2.3 Multiple Scattering for a Periodic Collection of Objects 197
 6.2.4 Modal Representation for Cylinders 198
 6.2.5 Scattering by a Single Object 199
 6.2.6 Numerical Implementation 203

SECTION III
APPLICATIONS: EFFECTIVE PROPERTIES OF METAMATERIALS

7 Soft Problems: Nonresonant Dielectric Structures 211
 Didier Felbacq, Frédéric Zolla, and Guy Bouchitté
 7.1 A Brief Foray into the Realm of Two-Scale Homogenization 211
 7.1.1 Two-Scale Homogenization with One Small Parameter 211
 7.1.2 Two-Scale Homogenization with Several Small Parameters 217
 7.2 Soft Problems: Theory 218
 7.3 Two-Scale Approach to Homogenization 219
 7.3.1 Description of the Structure and Methodology 219
 7.3.2 Derivation of the Microscopic Equations 221
 7.3.2.1 A short account of the two-scale expansion 221
 7.3.2.2 The equations at the microscopic scale 222
7.3.3 Derivation of the Homogenized Parameters 223
 7.3.3.1 The special case of a one-dimensional grating 225
7.4 Soft Problems: Numerical Examples 227
 7.4.1 A Little Vademecum 227
 7.4.2 Some Prerequisites for Two-Phase Materials 228
 7.4.3 Fictitious Charges Method as Applied to the Annex Problem 231
 7.4.3.1 Introduction to the column space \(\mathcal{V} \) 231
 7.4.3.2 The spaces \(\mathcal{V}_1, \mathcal{V}_1, \) and \(\mathcal{V}_2 \) 232
 7.4.3.3 Solution to the annex problem 233
 7.4.3.4 An example of total family in \(\mathcal{V}_1 \) and \(\mathcal{V}_2 \) 234
 7.4.3.5 Fine estimation of the uniform bound of the error 235
 7.4.4 Closed Formulae for Small Spherical and Cylindrical Scatterers 235
 7.4.4.1 Computation of \(\varphi_{1,1} \) (cylindrical case) 237
 7.4.4.2 Computation of \(\varphi_{3,3} \) (spherical case) 237
 7.4.5 Closed Formulae for Foliated and Checkerboard-Like Media 237
 7.4.6 Numerical Examples and Comparisons 244
 7.4.6.1 Spherical inclusions: comparison with the main mixing laws 244
 7.4.6.2 Non-spherical inclusions giving rise to isotropic metamaterials 245
7.5 Soft Problems: Toward Resonance (Metal–Dielectric Mixing) 245
7.6 Tiny Enough to Be Homogeneous? 253
 7.6.1 Introduction 253
 7.6.2 Lossless Dielectric 254
 7.6.2.1 Convergence 254
 7.6.2.2 Angular response 255
 7.6.3 Metals 257
 7.6.3.1 Convergence 257
 7.6.3.2 Angular response 258
 7.6.3.3 Comparison between the different homogenization approaches 258
Preface

The domain of metamaterials now covers many areas of physics: electromagnetics, acoustics, mechanics, thermics, and even seismology. Huge literature is now available on the subject but the results are scattered. Although many ideas and possible applications have been proposed, which of these will emerge as a viable technology will only unfold with time. This book is concerned with electromagnetic waves only and deals essentially with the hard science, mathematical and numerical, behind the often spectacular, but somewhat oversold, possible applications of metamaterials. In a rapidly evolving field, with lots of would-be revolutions, spending too much pages on the zoology of metamaterials would certainly condemn this book to a rapid obsolescence. By contrast, the theoretical and numerical methods presented here are the basis upon which future trends will be built.

The first chapter is a survey of Maxwell’s equations and their main properties. After a short historical introduction, potentials and conservation laws are addressed. Then comes a brief presentation of the formulation of Maxwell equations using differential forms. Finally, causality and its consequences are addressed.

Chapter 2 provides the elements of the physics of materials required to bridge semiconductor and metal sciences with electromagnetism, and Chapter 3 is a general reflection upon the notion of averaging and the definition of effective properties.

Chapter 4 is a crash course on basic principles of transformation optics. Simple examples in cylindrical geometry are given using radial transformations that show the unifying power of the concept: mapping an open domain on a bounded domain, perfectly matched layers, invisibility cloaks, and superlenses. Some numerical
simulations are presented as an illustration including cloaks of arbitrary shapes and mimetism.

Chapter 5 is concerned with wave propagation in periodic media. The theory of Bloch waves is described in detail. The situation where the medium does not cover the entire space is addressed, because in that situation the boundary of the periodic medium is decorated with evanescent modes. Evanescent waves are then investigated. They are shown to be a complexification (in the mathematical meaning) of the Bloch spectrum.

Chapter 6 tackles the problem of diffraction of electromagnetic waves by a bidimensional grating. A new formulation based on finite element method is proposed. A lot of academic cases and more challenging cases are given for highlighting both the versatility and the powerfulness of the method described in this chapter. The second part of the chapter is devoted to the method of multiple scattering, which is presented for a collection of parallel cylinders.

Chapter 7 is the first chapter devoted to effective properties of metamaterials. Periodic structures are considered and the period of the materials are small with regard to the wavelength of the incoming wave. Besides, the materials are supposed to be of low contrast: this is the framework of soft problems. Closed formulae are given in some academic cases such as small spherical and small circular cylindrical inclusions. A special attention is drawn on spherical inclusions and the mixing formulae (Rayleigh, Maxwell Garnett, Bruggeman) are compared to the two-scale theory.

Chapter 8 addresses the homogenization of highly contrasted objects. The first situation investigated is that of a periodic collection of thin metallic wires. It is shown that the effective medium obtained is dispersive and has a plasmonic resonance. In the second part, the theory is extended to deal with finite-length rods. It is proven that the effective medium becomes spatially dispersive. The chapter closes with numerical investigations of the properties of the effective medium.

The final chapter is also devoted to homogenization theory. It deals with the possibility of homogenizing metamaterials for
frequency above the first band and taking into account the Mie resonances. Bidimensional resonant dielectric metamaterials are addressed and the onset of an effective magnetic activity is proven.

Didier Felbacq
Guy Bouchitté
Spring 2017