Current-Driven Phenomena in
NANOELECTRONICS

Edited by Tamar Seideman
Northwestern University
To my family
This page intentionally left blank
Contents

Preface vii

1. Electronic Structure of Metal–Molecule Interfaces 1
 H. Petek, M. Feng, and J. Zhao
 1.1. Introduction ... 1
 1.2. Image Charge Interaction at Metal Surfaces .. 4
 1.3. Hybrid NFE Band Formation at Metal–Organic Interface 8
 1.3.1. C,F, Quantum Well State .. 8
 1.3.2. PTCDA Metal–Organic Interface State .. 12
 1.4. Metal–Like Hybridization of Superatom States .. 14
 1.4.1. Superatom States of C_{60} ... 16
 1.4.2. NFE Band Formation by Superatom States of C_{60} 17
 1.5. Conclusions .. 20
 References ... 21

2. Inelastic Tunneling Current-Driven Motions of Single Adsorbates 26
 H. Ueba, S. G. Tikhodeev, and B. N. J. Persson
 2.1. Introduction .. 26
 2.2. Theory of STM-IETS .. 35
 2.2.1. Adsorbate-Induced Resonance Model of IETS .. 35
 2.2.2. NEGF Theory of IETS and Vibrational Heating .. 41
 2.2.3. Competition Between Elastic and Inelastic Current 45
 2.3. Adsorbate Motions Induced by Vibrational Excitation with STM 50
 2.3.1. Vibrational Ladder Climbing—Vibrational Heating 50
 2.3.2. Physical Meaning of Γ_{in} ... 52
 2.3.3. Numerical Examples of Inelastic Tunneling Current 55
 2.4. Coherent Ladder Climbing ... 59
 2.4.1. Coherent versus Incoherent Process ... 61
 2.5. Single-Electron Process via Anharmonic Mode Coupling 63
 2.5.1. Two-Electron Processes via Mode Coupling .. 74
 2.6. Action Spectroscopy ... 78
 2.7. Perspective Remarks ... 83
 References ... 84

3. DFT-NEGF Approach to Current-Induced Forces, Vibrational Signals, and Heating in Nanoconductors 90
 M. Brandbyge, T. Frederiksen, and M. Paulsson
 3.1. Introduction .. 90
 3.2. DFT-NEGF .. 92
 3.3. Elastic Transport Channels: Eigenchannels ... 96
 3.4. Inelastic Transport with DFT-NEGF .. 99
 3.4.1. Electron–Phonon Interactions: The Self-Consistent Born Approximation 101
 3.4.2. Electron–Phonon Interactions: The Lowest-Order Expansion 103
 3.4.3. Example: Atomic Gold Wire .. 105
 3.4.4. Example: Hydrocarbon Molecules Between Gold Contacts 107
 3.5. IETS Propensity Rules .. 108
 3.6. Heating of Vibrations by Current .. 111
 3.7. Conclusions and Outlook .. 117
 References ... 117

4. Current-Induced Local Heating in Molecular Junctions 123
 Z. F. Huang and N. J. Tao
 4.1. Current-Induced Instability .. 123
 4.1.1. Local Heating in Single-Molecule Junctions ... 124
 4.1.2. Theory of Current-Induced Local Heating ... 125
 4.1.3. Comparison of Molecular Junctions with Metallic Point Contacts 127
 References ... 127
Preface

From small amplitude vibration to desorption and reaction, tunneling electrons can induce a variety of fascinating phenomena in the molecular moiety of a heterojunction. Potential applications of current-driven dynamics in molecular-scale electronics range from sensitive surface spectroscopies to new forms of molecular machines. Proper understanding of current-driven dynamics in junctions is required also in order to suppress undesired consequences, such as heating and current-induced failure. From a theoretical perspective, dynamical events in junctions involve the interesting challenge of accounting for strongly nonadiabatic dynamics subject to bias voltage and the dissipative effects of the electrodes. From an experimental perspective, they involve the challenge of observing and manipulating single molecules.

In the following chapters you will find what I personally consider a beautiful collection of experimental and theoretical studies of current-driven events in molecular nanojunctions. The book opens (Chapter 1) with a fundamental study of the solid-molecule interface that underlies much of the functionality of molecular devices. In Chapters 2 and 3 we turn to studies of small amplitude vibration and its application in inelastic surface spectroscopies. One of the major consequences of current-driven vibrations, namely heating, is the topic of Chapters 4 and 5. The last two chapters conclude with demonstrations of current-driven large amplitude dynamics, including mechanical motions (Chapter 6) and surface nanochemistry (Chapter 7). I hope that you will find these studies inspiring and enjoyable.

Tamar Seideman
This page intentionally left blank