Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-butanol</td>
<td>78–79</td>
</tr>
<tr>
<td>2-butanol</td>
<td>94</td>
</tr>
<tr>
<td>2-propanol</td>
<td>64, 66–70, 72, 91, 93–95, 139, 187–188, 194</td>
</tr>
<tr>
<td>absorption edge</td>
<td>149–151</td>
</tr>
<tr>
<td>ACWs see amorphous carbon whiskers</td>
<td></td>
</tr>
<tr>
<td>AFM see atomic force microscopy</td>
<td></td>
</tr>
<tr>
<td>AFM images</td>
<td>172–173, 175</td>
</tr>
<tr>
<td>AFM imaging</td>
<td>169, 172</td>
</tr>
<tr>
<td>air-drying</td>
<td>32, 34</td>
</tr>
<tr>
<td>alcohols 4, 8, 10, 26–27, 64–66 vinyl</td>
<td>137, 139, 141–142</td>
</tr>
<tr>
<td>aligned C(_{60}) microtubes 10, 68–72 alumina 210</td>
<td></td>
</tr>
<tr>
<td>amorphous carbon whiskers (ACWs) 109–110, 114</td>
<td></td>
</tr>
<tr>
<td>amplitude modulation</td>
<td>169</td>
</tr>
<tr>
<td>as-grown C(_{60}) nanowhiskers 199, 201</td>
<td></td>
</tr>
<tr>
<td>as-prepared C(_{60}) nanowhiskers 204</td>
<td></td>
</tr>
<tr>
<td>Auger maps</td>
<td>175–176</td>
</tr>
<tr>
<td>azomethine ylides</td>
<td>55–56</td>
</tr>
<tr>
<td>bipyramid C(_{60}) 97</td>
<td></td>
</tr>
<tr>
<td>buckling test 108, 119, 122–123</td>
<td></td>
</tr>
<tr>
<td>bulk C(_{60}) crystals 91, 118, 123</td>
<td></td>
</tr>
<tr>
<td>bulk crystals</td>
<td></td>
</tr>
<tr>
<td>fcc C(_{60}) 34–35</td>
<td></td>
</tr>
<tr>
<td>hexagonal C(_{60}) 34</td>
<td></td>
</tr>
<tr>
<td>bulk fullerene crystals 90</td>
<td></td>
</tr>
<tr>
<td>C(_{60}) 25–26, 28, 30, 32, 34, 36, 38, 40, 42–44, 46, 89–90, 139–143, 174–175, 189, 209–222, 224–225</td>
<td></td>
</tr>
<tr>
<td>condensation of 31, 147–148</td>
<td></td>
</tr>
<tr>
<td>double bonds of 55–56</td>
<td></td>
</tr>
<tr>
<td>mechanical characterization of 118–119</td>
<td></td>
</tr>
<tr>
<td>microbelt 96–97</td>
<td></td>
</tr>
<tr>
<td>nano-bipyramid 97</td>
<td></td>
</tr>
<tr>
<td>optical properties of 147–148</td>
<td></td>
</tr>
<tr>
<td>reaction of 55–56</td>
<td></td>
</tr>
<tr>
<td>saturated pyridine solution of 139</td>
<td></td>
</tr>
<tr>
<td>shape formation process of 95–96</td>
<td></td>
</tr>
<tr>
<td>sublimation of 198–199</td>
<td></td>
</tr>
<tr>
<td>vibronic coupling of 147–149</td>
<td></td>
</tr>
<tr>
<td>C(_{60}) nanowhiskers aligned 140</td>
<td></td>
</tr>
<tr>
<td>fabricated 90</td>
<td></td>
</tr>
<tr>
<td>incorporated 83</td>
<td></td>
</tr>
<tr>
<td>C(_{60}) radical anions 30</td>
<td></td>
</tr>
<tr>
<td>C(_{60})NWs 45, 47, 49, 158, 191 grown 29–31</td>
<td></td>
</tr>
<tr>
<td>growth rate of 7, 30, 51</td>
<td></td>
</tr>
<tr>
<td>length growth rate of 45, 47</td>
<td></td>
</tr>
<tr>
<td>length of 43, 45, 49, 51</td>
<td></td>
</tr>
<tr>
<td>modified 38</td>
<td></td>
</tr>
<tr>
<td>pressed 187, 189–191</td>
<td></td>
</tr>
<tr>
<td>cantilever bend test 131</td>
<td></td>
</tr>
<tr>
<td>carbon atoms 56, 118, 191–192, 194</td>
<td></td>
</tr>
</tbody>
</table>
carbon nanocapsules 103, 109, 111
carbon nanomaterials 60, 103–104, 114
 low-dimensional 19, 54
carbon nanotubes 40, 54, 77, 113, 118, 138–139, 206, 210
 Ce-ion-incorporated fullerene 81
 Ce-ion-incorporated nanowhiskers 82–83
 Ce ions 78, 82–83
cellulose fibers 139
chemical bonds 118
chemical calculations 154
chemical inhomogeneity 168–170
chemical mapping 164
chlorobenzene 224
conductance 103–104, 111–114, 210, 212–213
conductivity 77, 175, 177
crystal field 35
crystal structure 26, 32, 83, 95, 97, 186, 211, 216, 219
 solvated 142
crystalline structure 17, 225–226
crystallinity 152, 156, 158–160
 molecular 26
 seed 95
 single 3, 7, 19, 32, 104, 122, 151–153, 211, 216
 solution-grown 39
 solvent-free 26
Curie–Weiss law 189–190
curved nanowhiskers 28
cyclopropanation 55
derivative molecules 3, 13, 57
derivatization 54
diethyl bromomalonate 55
direct methanol fuel cells (DMFCs) 81
 DMFCs see direct methanol fuel cells
dried C_{60}NWs 14, 185–188, 193–194
elastic deformation 25, 37, 39
electrical conductivity 77, 138, 174, 204
electron-beam (E-B) lithography 210
electron beams 7, 17, 19, 186
evaporation 142, 219
 Fe-ion-incorporated fullerene 78
 Fe-ion-incorporated nanowhiskers 83
 Fe-ion incorporation 78–79
 Fe ions 78–79
 FET characteristics 215, 218–219, 223
 FETs see field effect transistors
 FFM see friction force microscopy
 field-effect mobility 219–220, 222
 field effect transistors (FETs) 16–17, 174, 210–215, 218, 220, 222, 224, 226
 fine crystals 89–100
 inorganic 91
 monodispersed 95
 solvated 95
 FNWs
 air-exposed 176
 annealed 213, 216, 225
 annealed C_{60} 221
 chlorobenzene-derived 224
 fibrous C_{60} 211
 hexagonal 13
 individual C_{60} 174
 insulator-shelled 176
 precipitated 211
prepared 140
pristine 110, 216–217
single-crystal C$_{60}$ 214
solvated 224–226
solvated C$_{60}$ 211
surface layer 180
force–deflection characteristics 126, 132
force–deflection-power characteristics 126, 132
fracture 109, 123–124, 126, 129, 131
fractured C$_{60}$ nanowhisker 129
friction force microscopy (FFM) 168
fullerene-based materials 63
fullerene-based nanostructures 77
fullerene-based solar cells 86
fullerene C$_{60}$ crystals 138
fullerene C$_{60}$ nanowhiskers 138–139
fullerene chemistry 118
fullerene crystals 4
fullerene derivatives 19, 53–58, 60–62, 77
incorporation of 53, 60
ratio of 58, 60
typical 53
water-soluble 55
fullerene derivatization 56
fullerene nanobelt 4
fullerene nanofibers 4, 19, 197–198, 200, 202, 204, 206
dried 198
heat-treated 19
fullerene nanomaterials 4, 19, 77, 163–164
low-dimensional 1
fullerene nanoparticles 170–171, 177
fullerene nanoribbon 4
fullerene nanorod 4
fullerene nanosheets 4, 76, 84–86
flexible shape 86
polygonal 85–86
rhombus shape 86
tunable hexagonal 85
fullerene nanostructures 75–76, 78–79, 84, 86
metalion-incorporated 78
precipitation of 76, 78
preparation of metal-ion-incorporated 78, 84, 86
fullerene nanotubes 1, 3, 19, 77, 138, 164, 198
inocorporated 83
isolated crystalline 103
metal-free nanoporous 80
nanoporous 80
nontubular 198
optimal metal-ion-incorporated 84
porous Ce-ion-incorporated 81
single crystalline 138
tubular 198
tubular nanoporous 81
fullerene nanowires 4, 138
fullerene sheets 85
fullerene solutions 10
dendohedral 3
incorporated 80
mechanical bend testing of 117, 135
modified 63
multiwall 205
multiwalled 110
spherical 90
fullerenols 54
Index

- **g-parity** 151, 154
- **gate voltages** 217, 220–221, 225
- **gold nanoparticles** 90, 96, 98
- **grain boundaries** 118, 134, 212
- **graphitic ribbons** 197, 203–204, 206
- **graphitization** 159–160
 - **photo-induced** 160
- **heat-treated C_{60}** nanowhiskers 199, 203–204
- **Hertzberg-Teller mechanism** 149, 151, 153
- **hexagonal nanowhisker** 28
- **high-resolution transmission electron microscopes** 199, 206
- **hysteresis** 190
- **injection mode** 70–71
- **injection rate** 10, 66–69
- **intensity** 158–160, 169, 192–193
 - **emission** 110
 - **integrated** 154–155
 - **relative** 31, 155, 158–159
- **interlayer spacing** 197, 204, 206
 - **average** 204
- **intermolecular interaction** 33, 35, 91, 95
- **irradiation** 5, 17–18, 186
- **irradiation time** 158–159
- **isopropyl alcohol** 4, 28, 43–44, 57, 78, 119, 187, 214
- **Jahn–Teller mechanism** 151, 153
- **KBr crystals** 18
 - **needlelike** 18–19
- **laser irradiation** 158–159
- **laser irradiation time** 158–160
- **lateral force microscopy (LFM)** 168
- **lattice constants** 5, 7, 11–12, 14, 185, 187–189, 216, 225
- **LFM** see **lateral force microscopy**
- **liquid–liquid interface** 4, 7, 10, 27–28, 44, 214
- **liquid–liquid interfacial precipitation (LLIP)** 1, 3, 5, 25, 27, 44, 57, 63, 75–76, 91, 118–119, 138, 148, 185–186, 198, 211
- **liquid–liquid interfacial precipitation method** 1, 3, 25, 44, 75, 91, 138, 148, 185, 198
- **LLIP** see **liquid-liquid interfacial precipitation**
- **LLIP process** 64–65, 222
- **loaded C_{60}** nanowhisker 134
- **luminescence** 103, 110
- **magnetic alignment** 137, 139, 141–142
- **magnetic bars** 45–46
- **magnetic fields** 137, 141–142, 187
- **magnetic susceptibility** 185, 187, 189
- **malonic acid derivatives** 55, 60
- **metallic nanotips** 111–112
- **methanol soaking** 156
- **microchannel** 10–11
- **microrods** 70
- **Miller indices** 216–217
- **molecular reorientation** 194
- **nanoballs** 92, 94
- **nanocrystals** 91, 96, 147–148
- **nanofibers** 19, 44, 197–199, 204, 206
- **nanomaterials** 61, 104
- **nanscale devices** 25, 27, 39
- **nanscaled phases** 147–148, 153, 155, 157
nanotechnology 22, 148, 182, 212
brittle 129
isolated 28
long 123
metal-ion-incorporated 83
porous 82
Ni-ion-incorporated C$_{60}$ 80–81
NMR see nuclear magnetic resonance
NMR measurements 185, 187–188, 191, 193–194
nuclear magnetic resonance (NMR) 185–186
nucleation rate 73
optical absorption 31, 150–151
broad 30
organic materials 40, 64, 165, 214
oscillation amplitude 168–169
oxygen 2, 176, 180, 210–211
oxygen intercalation 176–177, 180
pericyclic reactions 55
phase 168–169, 186–187
graphitic 147–148
low temperature 155
perovskite 2
phase imaging 163, 169, 180
photo-induced structural transformations 147–148, 160
photopolymerization 5, 29, 158–160
piezomanipulation 105, 111, 114
platinum catalysts 206
polymerization 18, 83–84, 123–124, 159, 178, 186
photo-induced 158, 160
precipitator injection rate 66–67
pristine C$_{60}$ 187–194
pristine C$_{60}$ crystals 77, 155, 194, 198
pristine C$_{60}$ FNWs 175, 216
pristine C$_{60}$ powder 77, 83, 185–191
proton decoupling 192
pulverization 141
pyridine solution 7–9, 14
pyridine solution of C$_{60}$ 12
pyrochlore phase 2
pyrrolidine derivatives 55–56
quantized conductances 112, 114
radical anions 30–31
Raman bands 33–34
Raman spectra 31, 34, 75, 83–84, 158, 199, 201
Raman spectrum 158–159, 199
Raman spectrum of as-grown C$_{60}$ nanowhiskers 199
ratios
molar 95
on/off 223–225
solvent 9, 47
volume 9, 64
reprecipitation 91–93, 95
resistivity 15–16, 77, 110, 204
electrical 15–16, 110, 198, 204
resistivity change 15–16
resonance frequency 168–169, 177
SAEDP see selected-area electron-diffraction pattern
SAM see scanning Auger microscopy
scanning Auger microscopy (SAM) 164
scanning electron microscopy (SEM) 2, 28, 44, 48, 69, 90, 97–98, 122, 140, 156, 164, 198, 215
scanning force microscopy (SFM) 163, 165
selected-area electron-diffraction pattern (SAEDP) 5, 8, 14, 17–19, 58, 60, 199–200
SEM see scanning electron microscopy
semiconductors 76, 91, 182, 227–228
sensors 2, 119–120, 165
SFM see scanning force microscopy
SiO₂ 177, 214–215, 218
SiO₂ layer 217
sodium hydride 55
solubility 57, 78, 84
solution growth 25–26, 39
solution temperature 4
source–drain voltage 217–218, 220
sp² character 192, 194
SPM (scanning probe microscopy) 163–165, 179
stick diagram 154
STM (scanning tunneling microscopy) 104, 164–165
sublimated C₆₀ crystals 72
sublimation 34–35, 178, 219
supersaturation 9, 51, 64, 66–68
supersaturation of C₆₀ 65–66
surface energy 73
surface topography 172

TEM see transmission electron microscopy
temperature dependence 47, 155, 185, 188–191
temperatures 2, 7, 9, 17, 43–45, 64, 75–76, 79, 84, 91, 93–94, 153, 155, 158, 178, 187
aging 91–92
average device 127–128
elevated 164, 177–178
high 17, 84, 118, 188, 198, 201, 204, 206
low 155, 188, 192
tensile loading 119–121
tester actuation 130
time constants 159–160
time evolution 31–34, 158–159
tip–surface interactions 165, 167
toluene 4, 12, 19, 44, 46, 48, 51, 54–55, 57, 64, 66, 70, 78–79, 149–151, 187–188, 192–194
toluene solution 4, 10, 26–28, 30, 34–35, 43–44, 47, 49, 187
torsional deflection 166, 168
transition metal ions 77
transmission electron microscopy (TEM) 4, 14, 17, 58, 80, 90, 92, 104, 119, 123, 140, 164, 186, 197–198
tunneling current 165
ultrahigh vacuum 169, 177–178
ultrasonication 9–10, 19, 44
vacuum chamber 218, 221
vacuum conditions 211, 213, 222, 224–225
vacuum-drying 32
variable range hopping (VRH) 212–213
voltages 109, 220, 222
acceleration 17
threshold 217, 219, 225
volume mixing ratios 43, 47–49, 51
VRH see variable range hopping

water 7, 43, 49–50, 139
 distilled 49, 64, 68
water content 43–44, 49, 51–52
whisker diameter 133
wind pressure 35–38
work function 221

X-ray diffraction (XRD) 31, 83, 95, 186, 214, 225
XRD see X-ray diffraction
XRD pattern 31–32, 84, 99

xylene 4, 12, 33, 57, 78–79, 91, 93–95, 156, 214, 216–217, 219, 222, 224–225
xylene molecules 156, 219
xylene solutions 11, 33, 93–94, 214

zero-field-cooled (ZFC) 189–190
ZFC (zero-field-cooled) 189–190
zirconate titanate 1–2