carbon nanotubes
This page intentionally left blank
carbon nanotubes
FROM BENCH CHEMISTRY TO PROMISING BIOMEDICAL APPLICATIONS

EDITOR
GIORGIA PASTORIN
National University of Singapore, Singapore

PAN STANFORD PUBLISHING
Contents

Contributors xi
Preface xv

1. Stabilisation of Carbon Nanotube Suspensions 1
 Dimitrios G. Fatouros, Marta Roldob and Susanna M. van der Merwe
 1.1 Introduction 1
 1.2 Functionalised CNTs for Drug Delivery 4
 1.3 Surface-Active Agents in Stabilising CNT Suspensions 5
 1.4 Stabilisation of Aqueous Suspensions of Carbon Nanotubes by Self-Assembling Block Copolymers 9
 1.5 Stabilisation of Aqueous Suspensions of Carbon Nanotubes by Chitosan and its Derivatives 12

2. Biomedical Applications I: Delivery of Drugs 23
 Giampiero Spalluto, Stephanie Federico, Barbara Cacciari, Alberto Bianco, Siew Lee Cheong and Maurizio Prato
 2.1 Introduction 23
 2.2 Non-Covalent Functionalisation on the External Walls 27
 2.3 “Defect” Functionalisation at the Tips and Sidewalls 29
 2.4 Covalent Functionalisation on the External Sidewalls 30
 2.5 Encapsulation Inside CNTs 33
 2.6 Conclusions and Perspectives 34

3. Biomedical Applications II: Influence of Carbon Nanotubes in Cancer Therapy 47
 Chiara Fabbro, Francesca Maria Toma and Tatiana Da Ros
 3.1 Importance of Nanotechnology in Cancer Therapy 47
 3.2 Carbon Nanotubes: A Brief Overview 51
 3.3 Carbon Nanotubes as Drug Vectors in Cancer Treatment 52
 3.4 Delivery of Oligonucleotides Mediated by Carbon Nanotubes 59
 3.5 Carbon Nanotubes in Radiotherapy 64
 3.6 Carbon Nanotubes in Thermal Ablation 66
 3.7 Biosensors Based on Carbon Nanotubes 70
 3.8 Conclusions 79
4. Biomedical Applications III: Delivery of Immunostimulants and Vaccines 87
 Li Jian, Gopalakrishnan Venkatesan and Giorgia Pastorin
 4.1 Introduction to the Immune System 87
 4.2 Immunogenic Response of Peptide Antigens Conjugated to Functionalised CNTs 88
 4.2.1 Fragment Condensation of Fully Protected Peptides 89
 4.2.2 Selective Chemical Ligation 91
 4.3 Interaction of Functionalised CNTs with CPG Motifs and Their Immunostimulatory Activity 94
 4.4 Immunogenicity of Carbon Nanotubes 96
 4.5 Conclusions 100

5. Biomedical Applications IV: Carbon Nanotube–Nucleic Acid Complexes for Biosensors, Gene Delivery and Selective Cancer Therapy 105
 Venkata Sudheer Makam, Jason Teng Cang-Rong, Sia Lee Yoong and Giorgia Pastorin
 5.1 Introduction 105
 5.2 Interaction of CNTs with Nucleic Acids 106
 5.3 Sensors and Nanocomposites 125
 5.4 CNT–Nucleic Acid Complexes for Gene Delivery and Selective Cancer Treatment 132

 Cécilia Ménard-Mayon
 6.1 Introduction 151
 6.2 Effects of Carbon Nanotubes on Neuronal Cells’ Adhesion, Growth, Morphology and Differentiation 153
 6.3 Electrical Stimulation of Neuronal Cells Grown on Carbon Nanotube-Based Substrates 161
 6.4 Investigation of the Mechanisms of the Electrical Interactions Between CNTs and Neurons 173
 6.5 Conclusions and Perspectives 176

7. Biomedical Applications VI: Carbon Nanotubes as Biosensing and Bio-interfacial Materials 185
 Yupeng Ren
7.1 Introduction 185

7.2 Biosensor 186
 7.2.1 Structure and Electric Properties of CNTs 186
 7.2.2 CNTs as Electric Sensors 188
 7.2.2.1 CNT-based electric devices 188
 7.2.2.2 CNT-based sensors 190
 7.2.2.2.1 Mass/force sensor 190
 7.2.2.2.2 Chemical sensors 191
 7.2.2.2.3 Structure sensor 195
 7.2.2.2.4 Electric probes 196
 7.2.2.2.5 Microscope sensors 197
 7.2.2.2.6 Liquid flow sensor: transfer momentum to current 198
 7.2.3 Fluorescence Emission, Quenching and Detection 198
 7.2.3.1 Fluorescence emitter 199
 7.2.3.2 Raman spectrum 204
 7.2.3.3 Electric luminescence 204
 7.2.3.4 Fluorescence quenching 204
 7.2.3.5 Photoconductivity 207

7.3 Bio-interface 207
 7.3.1 The Fundamental Properties for Bio-interface Application 207
 7.3.2 Applications 209
 7.3.2.1 Applications for bone tissue engineering 209
 7.3.2.2 Applications for neural tissue engineering 212
 7.3.2.3 Application for other cells and tissues engineering 212

7.4 Conclusions 213

8. Toxicity of Carbon Nanotubes 223

Tapas Ranjan Nayak and Giorgia Pastorin

8.1 Introduction 223

8.2 Parameters Responsible for the Toxicity of CNTs 224
 8.2.1 Surface of CNTs 224
 8.2.2 CNTs' Concentration 227
 8.2.3 CNTs' Dispersibility 233
 8.2.4 Length and Diameter 233
 8.2.5 Purity 235
9. Overview on the Major Research Activities on Carbon Nanotubes being done in America, Europe and Asia

Cécilia Ménard-Moyon and Giorgia Pastorin

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>247</td>
</tr>
<tr>
<td>9.2 America</td>
<td></td>
</tr>
<tr>
<td>9.2.1 USA</td>
<td>248</td>
</tr>
<tr>
<td>9.2.1.1 Electronic properties of CNTs</td>
<td>249</td>
</tr>
<tr>
<td>9.2.1.2 CNT-FETs</td>
<td>249</td>
</tr>
<tr>
<td>9.2.1.3 CNT nanophotonics</td>
<td>253</td>
</tr>
<tr>
<td>9.2.2 USA</td>
<td>255</td>
</tr>
<tr>
<td>9.2.2.1 Functionalisation of CNTs for biomedical applications</td>
<td>256</td>
</tr>
<tr>
<td>9.2.2.2 CNTs for bioimaging and biosensing</td>
<td>264</td>
</tr>
<tr>
<td>9.2.2.3 Electronics and optical properties of CNTs</td>
<td>267</td>
</tr>
<tr>
<td>9.2.3 USA</td>
<td>269</td>
</tr>
<tr>
<td>9.2.3.1 CNT sorting</td>
<td>269</td>
</tr>
<tr>
<td>9.2.4 USA</td>
<td>273</td>
</tr>
<tr>
<td>9.2.4.1 Synthesis of CNTs</td>
<td>273</td>
</tr>
<tr>
<td>9.2.4.2 Functionalisation of CNTs</td>
<td>276</td>
</tr>
<tr>
<td>9.2.4.3 Optical properties of nanomaterials</td>
<td>279</td>
</tr>
<tr>
<td>9.2.5 USA</td>
<td>282</td>
</tr>
<tr>
<td>9.2.5.1 CNT-based sensors</td>
<td>282</td>
</tr>
<tr>
<td>9.2.5.2 Single-particle tracking</td>
<td>287</td>
</tr>
<tr>
<td>9.2.6 Mexico</td>
<td>287</td>
</tr>
<tr>
<td>9.2.6.1 Doping of CNTs</td>
<td>288</td>
</tr>
<tr>
<td>9.2.6.2 Electrical properties of CNTs</td>
<td>290</td>
</tr>
<tr>
<td>9.2.6.3 Junctions between CNTs or between metals and CNTs</td>
<td>292</td>
</tr>
<tr>
<td>9.2.6.4 Incorporation of CNTs with different species</td>
<td>294</td>
</tr>
<tr>
<td>9.3 Europe</td>
<td></td>
</tr>
<tr>
<td>9.3.1 Drug Delivery and Other Biomedical Applications</td>
<td>296</td>
</tr>
<tr>
<td>9.3.2 Neuronal Applications</td>
<td>300</td>
</tr>
<tr>
<td>9.3.3 Photovoltaic Applications</td>
<td>302</td>
</tr>
<tr>
<td>9.3.4 Functionalisation of CNTs</td>
<td>303</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>9.4</td>
<td>Asia</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Japan</td>
</tr>
<tr>
<td>9.4.1.1</td>
<td>Encapsulation and reactions inside CNTs</td>
</tr>
<tr>
<td>9.4.1.2</td>
<td>Synthesis of CNTs</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Japan</td>
</tr>
<tr>
<td>9.4.2.1</td>
<td>Investigations on molecules@CNT conjugates</td>
</tr>
</tbody>
</table>

Index

335
This page intentionally left blank
Contributors

Giorgia Pastorin received her MSc in pharmaceutical chemistry and technology in 2000 and her PhD in 2004 from the University of Trieste (Italy), working on adenosine receptors’ antagonists. She spent two years as a post-doc at CNRS in Strasbourg (France), where she acquired some skills in drug delivery. She joined the National University of Singapore in June 2006 as Assistant Professor in the Department of Pharmacy–Faculty of Science.

Dr Pastorin’s research interests focus on both medicinal chemistry, through the synthesis of heterocyclic molecules as potent and selective antagonists towards different adenosine receptors’ subtypes, and drug delivery, through the development of functionalised nanomaterials for a variety of potential therapeutic applications.

She is the editor of this book and co-author in many chapters.

Marisa van der Merwe received a BPharm in 1998 and an MSc in pharmaceutics in 2000 from Potchefstroom University (South Africa). She additionally registered as a pharmacist in 2000 in South Africa. She was awarded a Nelson Mandela Scholarship by the University of Leiden (The Netherlands) to do most of her research for her PhD in pharmaceutics, which she obtained in 2003 from the University of Potchefstroom. Her research during both her MSc and PhD focused on the mucosal delivery of peptide drugs using N-trimethyl chitosan chloride as absorption enhancer. She spent a further 18 months as a post-doc at the North West University (South Africa) researching mucosal vaccine delivery for a pharmaceutical company. She joined the University of Portsmouth (England) in September 2004 and is a Senior Lecturer in Pharmaceutics in the School of Pharmacy and Biomedical Sciences. Her research interests include mucosal peptide, protein and vaccine delivery, as well as nanomaterials for drug delivery with a variety of potential therapeutic applications.

She is the main author of Chapter 1 on the functionalisation of carbon nanotubes.
Giampiero Spalluto received his degree in chemistry and pharmaceutical technology in 1987 from the University of Ferrara. He obtained a PhD in organic chemistry from the University of Parma in 1992. Between 1995 and 1998 he was Assistant Professor of Medicinal Chemistry at the University of Ferrara. Since November 1998, he has held the position of Associate Professor of Medicinal Chemistry at the University of Trieste and is a member of the Italian Chemical Society since 1989 (Medicinal Chemistry and Organic Chemistry divisions). Dr Spalluto’s scientific interests have focused on the enantioselective synthesis of natural compounds and the structure activity relationships of ligands for adenosine receptor subtypes and antitumor agents. He has authored more than 150 articles published in international peer-reviewed journals.

He is the main author of Chapter 2 on carbon nanotubes for drug delivery.

Tatiana Da Ros received her MSc in pharmaceutical chemistry and technology in 1995 and her PhD in medicinal chemistry in 1999.

She worked as post-doc at the Pharmaceutical Sciences’ Department in Trieste and spent many periods abroad visiting Prof. Wudl’s group at UCLA (USA) in 1999, Prof. Taylor’s lab at Sussex University (UK) in 2000, the Biophysique lab at Museum National d’Histoire Naturelle (France) in 1999, 2000, 2001 and 2002, and Dr Murphy’s group at the MRC in Cambridge (UK) in 2004. In 2002 she joined the Faculty of Pharmacy in Trieste as Assistant Professor.

Dr Da Ros’s research is mainly focused on the study of fullerene and carbon nanotube derivatives’ biological applications. She is the co-author of about 70 articles on peered international journals and of different book chapters. She is co-organiser of the annual symposium dedicated to the bioapplications of fullerenes, carbon nanotubes and nanostructures, in the Electrochemical Society Spring Meeting and co-editor of Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (Springer, 2008).

She is the main author of Chapter 3 on carbon nanotubes for cancer therapy.
Li Jian received his BSc in pharmacy in 2004 from Shanghai Jiao Tong University (China). He entered the National University of Singapore in January 2009 as a PhD candidate in the Department of Pharmacy–Faculty of Science. His research is focused on carbon nanotubes as drug delivery system.

He is the main author of Chapter 4 on carbon nanotubes for the delivery of vaccines and immunostimulants.

Venkata Sudheer Makam received his MSc in industrial chemistry from the Technical University of Munich (TUM) and National University of Singapore (NUS) in 2008, during which time he did his thesis, “Biocatalytical and Expression Studies of β-Aminopeptidases,” at Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Later, he started his career as a research assistant in the Biophysics laboratory at the National University of Singapore. In 2009, he joined Dr Giorgia Pastorin’s group as research assistant in the Department of Pharmacy, NUS, where he focuses on lab-on-a-chip devices for cancer diagnostics. Makam is currently doing his PhD in the same group.

He is the main author of Chapter 5 on carbon nanotube–nucleic acid complexes.

Cécilia Ménard-Moyon received her MSc in organic chemistry in 2002 from the University of Pierre et Marie Curie in Paris. She obtained her PhD in 2005 at CEA/Saclay (France) working in the group of C. Mioskowski on carbon nanotubes and their applications for optical limitation, nanoelectronics, and the development of novel methods of functionalisation.

In 2006 she worked as a post-doc in the group of Richard J. K. Taylor on the total synthesis of a natural product (‘upenamide) and on the development of novel methods of synthesis of heterocycles. She then joined, for 18 months, the R&D department of Nanocyl in Belgium, one of the main European producers of carbon nanotubes, and worked on the synthesis, dispersion and functionalisation of carbon nanotubes.
Since October 2008, Dr Ménard-Moyon holds the position of Researcher at CNRS in the group of A. Bianco in Strasbourg. Her research interests focus on the functionalisation of carbon nanotubes for the vectorisation of biologically active molecules.

She is the main author of Chapter 6 on the influence of carbon nanotubes in neuronal living networks and of the overview (Chapter 9) on the main research activities on carbon nanotubes in the world.

Yupeng Ren received his PhD in pharmaceutical sciences from the National University of Singapore (Singapore) in 2007, working on protein cages of plant viruses as potential anti-cancer drug delivery system. After finished his PhD, he worked as a research assistant at the Department of Pharmacy for one year and developed nano-drug delivery systems from carbon nanotubes. From November 2007 to January 2008, Dr Ren worked as an analyst for the Shanghai Institute for Food and Drug Institute. In February 2008, he joined the Shanghai Institute of Materia Medica, Chinese Academy of Sciences. As Associate Professor, his research is focused on the applications of nano-systems on drug delivery and analysis.

He is the main author of Chapter 7 on carbon nanotubes as biosensing and bio-interfacial materials.

Tapas Ranjan Nayak received his MTech in biochemical engineering and biotechnology in 2006 from the Indian Institute of Technology, Khargapur (India). He is currently continuing with his PhD at the National University of Singapore (Singapore). His research interests focus on toxicological studies and biomedical applications involving various nanomaterials such as carbon nanotubes, zinc oxide nanofibres and graphene.

He is the main author of Chapter 8 on the toxicity of carbon nanotubes.
Preface

Nanotechnology is a fast-emerging, sophisticated discipline that involves the study and manipulation of matter at atomic dimensions. It holds great promise to revolutionise and impact scientific research and industry, with opportunities for discovering new and exciting phenomena. This is largely due to nanotechnology being so different and counter-intuitive from previous technologies, resulting in past experience providing very little guidance about how to proceed. The fact that nanotechnology is the technology of the 21st century does not represent an exaggerated view of an ephemeral phenomenon, but instead echoes a real and immediate need for an extensive, “in-depth” investigation of what the synergy between Mother Nature and human ingenuity has to offer. Scientists, as is usual to their nature, have risen to the challenge with great gusto. This has led, among other things, to the realisation of advanced and extremely precise instruments that capitalise on the fact that material in the nanoscale dimensions allows integrated and compact systems to be fabricated. Nanotechnology includes not only great challenges such as the use of nanomaterials in novel scientific applications but also the understanding and manipulation of biological specimen at its fundamental levels. Carbon-based materials, among which carbon nanotubes (CNTs) represent a fascinating example, have shown extraordinary effects. CNTs represent interesting materials not only because they have high mechanical stability and nanoscale dimensions, but also because, depending on how the constitutive graphene sheets are rolled up, they share electronic properties of both metals and semiconductors. In addition, differently from spherical nanoparticles, they present a large inner volume that could be filled with several biomolecules ranging from small derivatives to proteins. This offers the advantage to load the inside of CNTs with a drug, while imparting chemical properties through the functionalisation of the external walls and thus rendering these tubes water-soluble and biocompatible.

However, there also exist cautious, almost mistrustful, but justified, opinions on nanotechnology and its consequences. A good reason is the effect on personal health or environmental pollution, because nanoparticles might escape the normal phagocytic defences in the body or might fluctuate and accumulate in the atmosphere. The reason behind such scepticism is that there is the general consciousness that the laws of physics and chemistry are pretty different when particles get down to the nanoscale. As a consequence, even substances that are normally innocuous can trigger intense chemical reactions and biological anomalies as nanospecies.
This has led to the stimulation of attitudes for and against this new science. This book addresses both these aspects by offering a general overview of the main factors that render CNTs unique for further promising applications, as well as the potentially risky aspects associated with these still-unknown carbon-based nanomaterials. It is particularly suitable for young scientists who have been involved in nanotechnology recently, or those who are simply curious about one of the most debated topics of their generation. The main authors of the present volume have been specifically picked from the pool of expert researchers and professors involved in nanotechnologies, but who are younger than 50, with the intention of providing dynamic visions and fresh perspectives of the actual "state of the art" of CNTs. To reiterate, the common undeniable opinion is that, although it is too early to say whether these "nano-structures" will wean the world from its current limitations, or monumentally backfire to cause harm, a superficial understanding might provide good ideas, but a deep knowledge favours great discoveries, even at the nanoscale.

Giorgia Pastorin