THE
MICROFLOW CYTOMETER

Frances S. Ligler
Jason S. Kim
Naval Research Laboratory, USA
Preface

While there are numerous current volumes and journal articles on applications of flow cytometry, we could find few recent compendia focused on advances in flow cytometers. Clearly, flow cytometers are becoming smaller and more geared toward special-purpose applications and less sophisticated operators. Yet as potential system developers, we had to scan the literature in microfluidics, optics, electronics, and nanotechnology to assemble information on the state-of-the-art. The dissatisfaction and frustration resulting from our search for a digest of progress in flow cytometry produced the concept for this book. Our search for the leaders in each of the relevant sub-areas produced the selection of chapter authors who have kindly contributed their perspectives on the future challenges and opportunities for realization of microflow cytometers.

For the scientists and engineers interested in the future of flow cytometers, the following chapters describe the continuing development of inexpensive, portable flow cytometers through incorporation of microfluidic technologies and small optical components. The underlying microscale theories essential for microflow cytometry are discussed, as well as advances that are representative of the current state-of-the-art. Innovative component technologies and integration of the components into functional prototype devices are reviewed with a goal of automated analysis and manipulation of particles and cells. Currently available commercial “personal cytometers” are examined to highlight both strengths and areas for necessary improvement.

Chapters included are from prominent scientists and engineers, including Howard Shapiro — a keystone in flow cytometry from the start of the technology, Michael Ladisch — past chair of the Bioengineering Section of the US National Academy of Engineering, Wayne Roth and Colin Rich — corporate leaders in industrial development and manufacture of benchtop flow cytometers, and John Dzenitis — project leader for the BioWatch version 2 biosurveillance system. Other chapters by leading scientists focus on technical breakthroughs critical for next-generation systems.

We hope you enjoy the compilation of the technologies that we think will spur future development, as well as the lessons learned from current developers of flow cytometry instrumentation. Perhaps you will discover a “missing link” after reading this book that will revolutionize future microflow cytometers. If that is the case, we wish you a satisfying and fruitful future in flow cytometry.

With best regards to our readers.

Jason Kim and Fran Ligler
Naval Research Laboratory
October 2009
Contents

Preface v

1. A History of Flow Cytometry and Sorting 1
 H. Shapiro
 1.1 Introduction .. 1
 1.2 Microscopy, Cells, and Cytometry — in the 1600s! 2
 1.3 The 1800s — Cell Theories, Staining, and Better Microscopy . 3
 1.4 The Early Twentieth Century — Ultramicroscopy and Einstein . 5
 1.5 World War II to Vietnam — Making Flow Cytometry Work ... 6
 1.5.1 Gucker’s Counter for Bacteria 6
 1.5.2 Optical and Electronic Blood Cell Counters 7
 1.5.3 Approaches to Cell Heterogeneity: Pulse Height Analysis 8
 1.5.4 Pap Smears and Diff Counts: Scanning Approaches ... 8
 1.5.5 Kamentsky’s Rapid Cell Spectrophotometer; Cell Sorting 9
 1.5.6 Flow Cytometry Meets Fluorescence and Goes Commercial 11
 1.6 Behemoth to Benchtop and Beyond: Thinking Inside the Box ... 14
 1.7 Microflow Cytometry — A Personal Note 17
 1.8 Conclusions .. 21

2. Analysis of Single Cells Using Lab-on-a-Chip Systems 25
 H. Preckel
 2.1 Introduction .. 25
 2.2 Instrument and Cell-Assay Chip 26
 2.3 Data Analysis ... 29
 2.4 Applications .. 29
 2.5 Conclusions .. 33

3. Personal Flow Cytometers — Luminex 37
 W. D. Roth
 3.1 Luminex, Cytometry, and Multi-Analyte Measurements 37
 3.1.1 Internal Dyes and Instrumentation 38
 3.1.2 Bead Classification Using Internal Dyes 38
 3.1.3 Reporter Response 39
 3.2 The Luminex 100 Flow Cytometer and xMap® Technology 39
 3.2.1 Optical Design 40
Contents

3.2.2 Electrical and Algorithm Design .. 44
3.2.3 Luminex 100 Fluidic Design 45
3.3 Technology Enhancements Post Luminex 100 46
3.3.1 Increasing Multiplex Capability 46
3.3.2 Increasing Throughput .. 47
3.3.3 Improving the Signal ... 47
3.3.4 Viscosity Compensation ... 47
3.3.5 Extending Dynamic Range .. 48
3.4 Future Technologies for Multiplexed Analytes 50
3.4.1 Static CCD Imaging of Beads 50
3.5 Conclusions and Outlook .. 51

4. The Accuri C6 Flow Cytometer® — A Small Revolution 53

C. Rich and G. Howes

4.1 Introduction ... 53
4.2 Design Goals ... 54
4.3 Development Process ... 56
4.3.1 User Personas ... 57
4.3.2 Instrument Specifications ... 58
4.3.3 Standardized Intensity Bead Set 59
4.3.4 User Time Trials .. 60
4.4 Major System Components .. 61
4.4.1 Fluidics ... 61
4.4.2 Optics ... 62
4.4.3 Electronics ... 63
4.4.4 Software .. 64
4.4.5 Enhancing the Manufacturing Process 65
4.5 Challenges to be Addressed .. 65
4.6 The Future ... 66

5. Progress in Capillary Flow Cytometry 69

D. King, A. Cappione, F. Ilkov, B. Goldman, R. Lefebvre, R. Pittaro and G. J. Dixon

5.1 Introduction ... 69
5.2 Guava Capillary Cytometers ... 71
5.2.1 Asymmetric Capillary Designs 74
5.2.2 Particle Velocity Measurement 79
5.3 Multisample Data Analysis .. 83

6. Focusing Particles Without Sheath Flows in Microflow Cytometers 89

S. Choi, E. Um and J.-K. Park

6.1 Introduction: Why Focus Particles With or Without Sheath Flows? 89
Contents

6.2 Microfluidic Techniques for Sheathless Particle Focusing 91
 6.2.1 Dielectrophoresis .. 91
 6.2.2 Acoustic Focusing .. 93
 6.2.3 Optical Focusing .. 94
 6.2.4 Hydrodynamic Focusing ... 95
6.3 Challenges of Sheathless Focusing Methods .. 99
6.4 Outlook for the Future .. 100

7. Two-Dimensional Particle Focusing: Sheath Flow on Two Sides 105
 J. Shin and M. Ladisch
 7.1 Importance of Microfluidic Flow to Flow Cytometry 105
 7.2 Characteristics of 2D Microfluidic Hydrodynamic Focusing 106
 7.2.1 Review of Progress in Microfluidic Flow Methods 107
 7.3 Microfluidic Channels and Fabrication ... 110
 7.4 Critical Issues and Future Outlook .. 113

8. Three-Dimensional Particle Focusing ... 117
 P. B. Howell
 8.1 Introduction .. 117
 8.2 Hydrodynamic Focusing .. 118
 8.3 Dielectrophoretic Focusing ... 122
 8.4 Hydrophoretic Focusing .. 124
 8.5 Other Means of Focusing ... 126
 8.6 Conclusions ... 126

9. Fluidic Control: Pumps and Values .. 131
 S. Zheng, K. Shaikh and J. Xie
 9.1 Introduction: The Importance of Flow Control in Flow Cytometry 131
 9.2 Method of Pumping ... 132
 9.2.1 Displacement Micropumps ... 132
 9.2.2 Dynamic Micropumps ... 134
 9.3 Microvalves .. 136
 9.4 Micropumps and Microvalves in Microflow Cytometry 137
 9.5 Conclusion and Outlook .. 142

10. Integrated Optics .. 147
 Y. Hosseini and K. V. I. S. Kaler
 10.1 Introduction ... 147
 10.2 Conventional Detection Systems in Microflow Cytometers 147
 10.3 On-Chip Integration of Optical Component 149
 10.3.1 On-chip Integration of Waveguides .. 149
 10.3.2 On-chip Integration of Optical Detectors 151
Contents

10.3.3 On-chip Integration of Light Sources 152
10.3.4 On-chip Integration of Microlenses 155
10.4 Conclusion and Summary 155

11. The Potential of Polymer Photonics for Microflow Cytometry 159

D. Leuenberger and M. Ramuz

11.1 Importance of Polymer Photonics to Microflow Cytometry 159
11.2 Current State of the Art of Microflow Cytometry 160
 11.2.1 Requirements on the Light Source 160
 11.2.2 Requirements on the Detection System 161
 11.2.3 Requirements on the Optical System Integration 161
11.3 State-of-the-art Organic Photonics 162
 11.3.1 State-of-the-art Organic Light Source 163
 11.3.2 State-of-the-art Organic Detection System 166
 11.3.3 State-of-the-art Optical System Integration Using Organic Photonics 168
11.4 Opportunities and Challenges for the Application of Organic Photonics in Microflow Cytometry 175

12. Electrical Detection in Microfluidic Flow Cytometers 181

M. Di Berardino

12.1 Introduction .. 181
12.2 Impedance Microflow Cytometry 183
 12.2.1 Principles of Measurement 183
 12.2.2 Chip Design 186
12.3 Future Developments in Impedance-Based Microflow Cytometry .. 190
 12.3.1 Interfacing Microfluidics 190
 12.3.2 Data Acquisition and Analysis 192
 12.3.3 Applications 194
12.4 Critical Issues 195
12.5 Conclusions and Outlook 196

13. Microflow Cytometer Electronics 201

J. S. Erickson, D. J. Kreft and M. D. Kniller

13.1 Importance of Electronics in Flow Cytometry 201
13.2 Cytometer Electronics: Components, Functions, and Data Collection 202
 13.2.1 Electronic Components 203
 13.2.2 Evaluation Kits 210
 13.2.3 Peripheral Operations and Power Conditioning Electronics ... 212
 13.2.4 Design and Fabrication Notes 214
13.3 Development of the NRL Autonomous Data Collection System .. 214
13.3.1 NRL Version 1 System ... 214

13.4 Future Outlook .. 217

14. Miniaturized Sorters: Optical Micro Fluorescence Activated Cell Sorter

K. D. Patel and T. D. Perroud

14.1 Importance of Optical Cell Sorting to Microflow Cytometry 221

14.2 Characteristics of Optical Cell Sorting 223

14.2.1 Deflection of Flowing Cells by Optical Forces 223

14.2.2 Active Sorting Using Optical Forces 225

14.2.3 Operation of Optical \(\mu\)FACS 228

14.3 Performance Metrics .. 229

14.3.1 Comparison of Throughput, Recovery, and Purity for Different \(\mu\)FACS Sorting Strategies 230

14.3.2 Cell Health and Viability 232

14.4 Critical Issues ... 234

14.4.1 New Concepts to Overcome Limitations in Optical \(\mu\)FACS Systems .. 234

14.4.2 Outlook on the Future of Optical \(\mu\)FACS 235

14.5 Conclusions ... 237

15. Raman Spectroscopy: Label-Free Cell Analysis and Sorting

J. W. Chan

15.1 Novel Raman Markers for Microflow Cytometry 243

15.2 Characteristics of a Raman-based Cytometer 245

15.3 Review of Past and Current Developments 248

15.3.1 Single Cell Raman Spectroscopy 248

15.3.2 Laser Tweezers with Raman Spectroscopy 249

15.3.3 Integration of LTRS with Microfluidic Systems 251

15.3.4 Biomedical Applications of LTRS 252

15.3.5 Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy ... 256

15.4 Conclusions and Outlook .. 258

16. The Autonomous Pathogen Detection System

J. M. Dzenitis and A. J. Makarewicz

16.1 Importance .. 263

16.2 Characteristics of Pathogen Detection Systems 264

16.2.1 Mission and Metrics .. 264

16.2.2 System Engineering and Analysis 266

16.3 Review of Progress .. 272

16.3.1 Early Development ... 272
Contents

16.3.2 Recent Development .. 278
16.4 Critical Issues .. 280
16.4.1 Problems to be Resolved .. 280
16.4.2 Future Outlook for Progress 283

17. Laser-Based Fabrication of Microflow Cytometers with Integrated Optical Waveguides 287
M. Dugan, A. A. Said, T. Haddock, P. Bado and Y. Bellouard

17.1 Flow Cytometer Miniaturization 287
17.2 Microfabrication Approaches and Their Relevance to Microflow Cytometers .. 288
17.2.1 Direct-write Fabrication Approach 289
17.3 Development of the Direct-Write Fabrication Technique 290
17.3.1 Prior Work — Ablation ... 290
17.3.2 FemtoWrite™ and FemtoEtch™ 290
17.4 Application of the Direct-Write Approach to the Fabrication of Microflow Cytometers .. 293
17.4.1 Fabricating Flow Channels with the Direct-Write 293
17.4.2 Fabricating Optics with the Direct-Write 294
17.4.3 Integrating Optical and Microfluidic Systems 296
17.5 Addressing the Present Limitations of the Direct-Write 299
17.5.1 Limited Index of Refraction 299
17.5.2 Optical Surface Quality ... 301
17.6 Bonding ... 302
17.6.1 Optical Contact Bonding .. 303
17.6.2 Thermal Bonding ... 303
17.6.3 Manufacturing Cost ... 303
17.7 Future Development Related to the Direct-Write Approach and Their Impact on the Fabrication of Microflow Cytometers 304
17.7.1 Micromechanical Elements 304
17.7.2 Novel Integrated Optical Capabilities 305
17.7.3 Additional Capabilities .. 306
17.7.4 Related Manufacturing Processes 307
17.8 Conclusion and Outlook ... 308

18. Systems Integration 311
J. S. Kim, J. P. Golden and F. S. Ligler

18.1 The Importance of Systems Integration to Microflow Cytometry 311
18.2 Optical Components for Integrated Microflow Cytometers 312
18.2.1 Waveguides ... 313
18.2.2 Lenses .. 314
18.2.3 Filters .. 316
18.2.4 Light Sources ... 317
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.2.5 Detectors</td>
<td>318</td>
</tr>
<tr>
<td>18.3 Pumps and Valves</td>
<td>319</td>
</tr>
<tr>
<td>18.4 Sample Processing</td>
<td>320</td>
</tr>
<tr>
<td>18.4.1 Sample Pre-Processing</td>
<td>320</td>
</tr>
<tr>
<td>18.4.2 Sample Post-Processing</td>
<td>325</td>
</tr>
<tr>
<td>18.5 Conclusions</td>
<td>328</td>
</tr>
</tbody>
</table>

Color Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>335</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>369</td>
</tr>
</tbody>
</table>
This page intentionally left blank