The challenge of providing adequate power supplies to the human race on an indefinite basis without causing long-term damage to the environment requires versatile means of energy conversion and storage. Electrical energy storage thus becomes vital today than at any time in human history. Electrochemical systems, such as batteries, supercapacitors, fuel cells, and photoelectrochemical cells, can help meet this objective. Future generations of rechargeable lithium batteries would be required to power portable electronic devices, store electricity from renewable sources, and as vital component for electric mobility being pursued as futuristic option in order to surmount fossil fuel demand and benign the environmental issues. In this context, engineering of new materials and especially at the nanoscale has become imperative to achieve enhanced energy and power density to meet the future challenges of energy storage.

The book incorporates the state-of-the-art understanding pertaining to nanoscale aspects of advanced energy storage devices, such as lithium-ion batteries, including microbatteries, and electrochemical supercapacitors. It focuses on various fundamental issues related to device performance of various positive and negative electrode materials, with special reference to their nanoscale advantages. It also includes fundamentals and processing techniques with regard to synthesis, characterization, physical, and electrochemical properties, and applications of nanoscale materials pertaining to advanced electrochemical power sources. A variety of advanced nanomaterials, such as transition metal oxides, phosphates, silicates, and conversion electrodes, together with some special nanomaterials such as carbon nanotubes, nanorods, and mesoporous carbons have been discussed by many notable authorities in the field.

S. R. S. Prabaharan is a professor and program chair (embedded system) in the School of Electronics Engineering (SENSE), VIT University, Chennai campus, India, since January 2013. He received his PhD in solid state devices in 1992. His immediate past appointment was with Manipal International University, Malaysia, where he was heading the electrical and electronics engineering programme and served as a full professor. Prior to this appointment, he served a long tenure with the University of Nottingham Malaysia/UK campuses under joint appointments as a professor and the head of Power and Energy Research Division. He has published over 75 papers in high-impact journals and over 200 conference proceedings. He has several international patents (USA and Japan) to his credit. He is known for his notable research in areas of Li-ion batteries, supercapacitors and advanced power solutions for electronic gadgets.

M. S. Michael is an assistant professor in the Department of Chemistry, SSN College of Engineering, Anna University, India. She received her PhD in 1996 in the field of corrosion from Madurai Kamaraj University, India. She also worked as a research fellow in Central Electrochemical Research Institute (CERCI), a premier national laboratory in India. She then continued her postdoctoral fellowship at the Université Pierre et Marie Curie, France, developing lithium-ion batteries. Dr. Michael has published more than 40 international peer-reviewed journal articles and has a few international patents to her credit. She has served on advisory boards and delivered invited talks in international conferences. Her expertise includes corrosion aspects of intermetallic alloys, hybrid supercapacitors, nanomaterials, lithium batteries, and Li-air batteries.
Nanotechnology in Advanced Electrochemical Power Sources
Nanotechnology in Advanced Electrochemical Power Sources

edited by
S. R. S. Prabaharan
M. S. Michael
Contents

Senior Authors xi
Foreword xv
Preface xvii

1 Redox Reaction in Size-Controlled Li$_x$FePO$_4$
Atsuo Yamada 1
1.1 Background 2
1.2 Binary Phase Diagram 3
1.3 Size Effect versus Surface Effect 4
1.4 Air Poisoning 6
1.5 Careful Verification of Phase Diagram 9
1.5.1 Electrochemical Approach 9
1.5.2 Structural Approach 10
1.5.3 Consistency between Electrochemical and Structural Data 16
1.5.4 Thermodynamic Approach 19
1.6 Summary 21

2 Orthosilicate-Based Cathode Materials for Lithium-Ion Batteries 23
Robert Dominko 24
2.1 Background 27
2.2 Structure-Property Relationship 27
2.2.1 X-Ray Diffraction Investigation 27
2.2.2 6Li MAS NMR Investigation 29
2.3 Synthesis and Microscopy 31
2.4 Electrochemical Properties (In situ Structural Studies: XRD and XAS) 32
Contents

2.5 Effect of Carbon Coating 44
2.6 Conclusions 46

3 Nanoscale Conversion Materials for Electrochemical Energy Storage

Maximilian Fichtner

3.1 Introduction 51
3.2 Current Electrode Materials 53
3.3 Conversion Electrodes 55
 3.3.1 Concept and Examples 56
 3.3.2 Anode Materials 57
 3.3.2.1 Metal–air batteries 57
 3.3.2.2 In Li-ion batteries 64
 3.3.3 As Cathode Materials 72
 3.3.3.1 Sulfides 73
 3.3.3.2 Fluorides 74
 3.3.4 Solid-State Reactions in Conversion Electrodes 79
 3.3.4.1 Thermodynamics 80
 3.3.4.2 Kinetics 83

3.4 Summary 86

4 Nanoengineered Lithium–Air Secondary Batteries: Fundamental Understanding and the Current Status of Development

M. S. Michael, Junichi Kawamura, Naoaki Kuwata, and S. R. S. Prabaharan

4.1 Introduction 90
4.2 Why Li–Air Battery? 92
4.3 Other Metal–Air Battery Systems 93
4.4 Rechargeable Li–Air Battery System 94
 4.4.1 Li–Air Battery Fundamentals 94
 4.4.2 Principle of Operation of Li–Air Battery 98
 4.4.2.1 Non-aqueous Li-air system 98
 4.4.2.2 Aqueous Li-air system 99
 4.4.2.3 Aqueous/nonaqueous hybrid electrolyte 99
 4.4.2.4 Solid-state electrolyte 100

4.5 Current Problems Encountered in Li–Air Rechargeable System 100
4.5.1 Non-aqueous Solvents 100
4.5.2 Gas Diffusion Electrode 106
4.5.3 Role of Electrocatalysts in the Li–Air System 111
 4.5.3.1 Nano-electrocatalysts for efficient air cathode 112
4.6 Developmental Challenges 118
4.7 Our Proprietary Cell Design 120
4.8 Summary 120

5 Nano Anode Materials for Lithium-Ion Batteries 127
 Lijun Fu, Yi Shi, Shu Tian, Yuping Wu, and Teunis van Ree
5.1 The Development of Anode Materials for Lithium Ion Batteries 128
5.2 Nanocarbon Anode Materials 128
 5.2.1 Carbon Nanotubes 129
 5.2.2 Carbon Nanofibers 134
5.3 Nano Si-Based Anode Materials 135
5.4 Nano Sn-Based Anode Materials 139
 5.4.1 Metallic Sn 139
 5.4.2 SnO2 142
5.5 Titanium Oxide-Based Nano Anode Materials 146
 5.5.1 Anatase TiO2 146
 5.5.2 Rutile TiO2 150
 5.5.3 TiO2(B) 151
 5.5.4 Nano Li4Ti5O12 153
5.6 Other Oxides-Based Nano Anode Materials 156
 5.6.1 Co-Based Oxides 156
 5.6.2 Ni-Based Oxides 161
 5.6.3 Cr2O3 162
 5.6.4 Nano MoO3 164
 5.6.5 Fe-Based Oxides 167
5.7 Future Aspects 169

6 Interface between Transition Metal Oxides-Based Electrodes and Lithium Salts Electrolytes: A Physicochemical Approach 177
 Sylvain Franger
6.1 Introduction 178
6.2 Experimental Section 179
Contents

6.3 Physicochemical Approach Proposed 180
 6.3.1 Background 180
 6.3.2 Kinetic Equations 182

6.4 Confrontation/Discussion 184
 6.4.1 Limitation of this Model at High Voltages (>4.3 V vs. Li) Especially in Presence of Propylene Carbonate 188
 6.4.2 Limitation of this Model with the Specific Surface of the Particles: the Case of the Nanostructured Materials 192

6.5 Summary/Perspectives 194

7 Electron Spin Resonance Studies of Lithium-Ion Battery Materials 199
 Nail Suleimanov, S. R. S. Prabaharan, Dinar Abdullin, and M. S. Michael
 7.1 Introduction 200
 7.2 Electron Spin Resonance Phenomenon 202
 7.3 Applications of ESR to Study Layered Cathode Materials 204
 7.3.1 Structural Imperfections of LiCoO₂ 204
 7.3.2 ESR Investigation of LiM_yCo_{1−y}O_2 (M = Al, Ga) System 205
 7.4 ESR Investigation of NASICON Structured Li_xMn_2(MoO_4)_3 206
 7.4.1 Experiment 206
 7.4.2 ESR Analysis 208
 7.4.2.1 Micro-scaled Li_xMn_2(MoO_4)_3 (x = 0–2.0) 215
 7.4.2.2 Nanoscaled Li_xMn_2(MoO_4)_3 (x = 0–2.0) 215
 7.5 Summary and Outlook 218

8 Graphene and Graphene-Based Nanocomposites for Electrochemical Energy Storage 221
 Marappan Sathish and Itaru Honma
 8.1 Introduction 222
8.2 Graphene Nanosheets and Functionalized Graphene Nanosheets Preparation 224
8.3 Graphene Nanosheets for Supercapacitors 226
8.4 Graphene Nanosheets for Li-Ion Battery 234
8.5 Graphene Nanosheets for Li–Air Battery 239
8.6 Summary 244

9 Carbon Nanotubes for Energy Storage Application 249
Elzbieta Frackowiak, Grzegorz Lota, and Krzysztof Fic
9.1 Introduction 250
9.2 Carbon Nanotubes/Conducting Polymers Composites for Capacitor 251
9.3 Carbon Nanotubes/Metal Oxides Composites for Capacitor 252
9.4 Pseudo-effects from Heteroatoms in the Carbon Network 255
9.5 Pseudocapacitance Effect Related with Hydrogen Electrosorbed in Carbon 266
9.6 Carbon Nanotubes as a Support for Catalyst in Fuel Cells 271
9.7 Summary 276

10 Manganese Oxide/Carbon Nanotube Nanocomposites for Electrochemical Energy Storage Applications 281
Sang-Bok Ma and Kwang-Bum Kim
10.1 Introduction 282
10.2 Synthesis and Characterization of MnO2/CNT Nanocomposites 285
 10.2.1 In situ Monitoring of Reduction Potential and pH 285
 10.2.2 UV-VIS Analysis 287
 10.2.3 Effect of pH 287
 10.2.4 CNT as a Reducing Agent 290
 10.2.5 Morphology of MnO2 on CNT 291
 10.2.6 Phase and Structure of MnO2 on CNT 292
10.3 Electrochemical Properties of MnO2/CNT Nanocomposites 294
Contents

10.3.1 Electrochemical Properties of MnO₂ Coated onto CNT 294
10.3.2 Effect of Initial Solution pH 296
10.3.3 Effect of CNT as a Conducting Agent 298
10.3.4 Effect of Heat Treatment of MnO₂/CNT Nanocomposite 299

10.4 Nanosized Lithium Manganese Oxide Dispersed on Carbon Nanotubes 303
10.4.1 Synthesis of LMO Dispersed on CNT 303
10.4.2 Phase and Structure of LMO Dispersed on CNT 306
10.4.3 Electrochemical Properties of LMO Dispersed on CNT 307
10.4.4 Structural Stability of LMO Dispersed on CNT 308

10.5 Summary 312

11 Manganese Oxides for Supercapacitors 317
Shinichi Komaba, Naoaki Yabuuchi, and Tomoya Tsuchikawa
11.1 Manganese Oxides for Electrode Materials 317
11.2 Synthesis of Manganese Dioxides as Electrode Materials of Redox Capacitor 321
11.3 From Symmetric to Asymmetric Supercapacitor 328
11.4 Electrolyte Additives for Improvement of Cyclability 331
11.5 Summary and Outlook 335

12 High-Voltage Electrode/Electrolyte Interface in ECs and Hybrid Capacitors 339
Katsuhiko Naoi and Kazumi Chiba
12.1 Background 340
12.1.1 High-Voltage Electrode/Electrolyte Interface 340
12.1.1.1 Cell voltage range of 2.5–3.0 V (Region I) 344
12.1.1.2 Cell voltage range of 3.0–3.7 V (Region II) 345
12.1.1.3 Cell voltage range of 3.7–4.0 V
 (Region III) 346
12.2 High-Voltage Electrolyte Structure at Interface 346
12.3 Summary 349

Index 353
Senior Authors

Atsuo Yamada
Department of Engineering, Building 5-607, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Elzbieta Frackowiak
Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 60-965 Poznan, Piotrowo 3, Poland

Itaru Honma
Institute of Multidisciplinary Research for Advanced, Tohoku University, 2-1-1, Katahira, Sendai, Miyagi 980-8577, Japan

Junichi Kawamura
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Katahira 2-1-1, Aobaku, Sendai, Japan

Katsuhiko Naoi
Institute of Symbiotic Science and Technology, Tokyo University of Agriculture & Technology, Tokyo, Japan

Kwang-Bum Kim
Department of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea

Maximilian Fichtner
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany

Nail Suleimanov
Zavoisky Physical-Technical Institute of Russian Academy of Sciences, 420029 Kazan, Russian Federation
Senior Authors

Robert Dominko
National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia, and ALISTORE-ERI, 80039 Amiens Cedex, France

Shinichi Komaba
Department of Applied Chemistry, Tokyo University of Science, Kagurazaka 1-3, Shinjuku, Tokyo 162-8601, Japan

S R S Prabaharan
School of Electronics Engineering, VIT University, Chennai Campus, Vandalur-Kelambakkam Road, Chennai, 600 127, India

Sylvain Franger
Physico-Chimie de l’Etat Solide, Institut de Chimie Moléculaire et des Matériaux, d’Orsay, UMR CNRS 8182, Université Paris XI, 91405 Orsay cedex, France

Teunis van Ree
Department of Chemistry, University of Venda, Thohoyandou, 0950 South Africa

Yuping Wu
New Energy and Materials Laboratory (NEML), Department of Chemistry, Fudan University, Shanghai 200433, China
Foreword

Electrochemical energy storage is regarded as a vital means of providing portable power to the mankind in variety of ways. The current trend in developing advanced power/energy sources has rendered impetus to advancement as anticipated by scientists and engineers around the world. Thus, tremendous research opportunities exist in both government and private funded activities all over the world. To facilitate that nanotechnology has complemented laurels to enhance such opportunities to meet the anticipated demand by improving the existing storage limits of battery system especially lithium-containing batteries of present and the future technologies and supercapacitors.

In this context, the book entitled Nanotechnology in Advanced Electrochemical Power Sources is timely which encompasses chapters contributed by various world renowned experts in the field of lithium-containing battery electrodes, electrolytes and supercapacitors. State-of-the-art understanding pertaining to nanoscale aspects of the above mentioned advanced energy storage devices has been the focus of this volume. While the fundamental issues relating to the device performance of various positive and negative electrode materials for instance, olivine and silicate cathodes, high-capacity anodic materials such as Sn alloys, silicon and conversion type electrode, modified electrode with CNTs, graphene-based supercapacitors, hierarchically designed porous air cathodes and their nanoscale advantages in terms of device performances are also covered. There are 12 full length chapters including a dedicated chapter on Li-air secondary batteries, a futuristic endeavor in developing a high energy density battery having theoretical specific capacity closest to gasoline. The intended audience of this book includes students, materials scientists, electrical engineers, new
Foreword

...comers who would like to learn the nuances of the exhilarating branch having enormous societal advantages for the mankind.

B.V.R. Chowdari
National University of Singapore,
Former president of IUMRS, President MRS (Singapore)
Executive Director NUS-India Research initiatives and Chairman
of ICMAT conferences
Preface

The challenge to provide adequate power supplies to the human race on an indefinite basis without causing long-term damage to the environment requires versatile means of energy conversion and storage. The advances in large-scale original equipment manufacturer (OEM) gadgets, smart cellular phones, tablet computers (tabs), power-hungry long-range communication devices, and modern-day electric mobility systems (plug-in electric cars, for instance) demand for huge power and energy in the form of rechargeable energy storage systems. Electrical energy storage thus becomes vital today than at any time in the human history. The recent evolution of nanotechnology may provide opportunities to meet the anticipated demand by improving the existing storage limits of battery system, especially Li-ion batteries, supercapacitors, and upcoming novel energy storage system namely Li-air rechargeable batteries. The engineering of new materials, and especially at the nanoscale, has become imperative to achieve enhanced energy and power efficiency to meet these challenges of energy storage systems. This book incorporates state-of-the-art understanding pertaining to nanoscale aspects of advanced energy storage devices such as Li-ion batteries, Li-air batteries, and electrochemical supercapacitors. It focuses on various fundamental issues related to the device performance of various positive and negative electrode materials, with special reference to their nanoscale advantages. It also includes fundamentals and processing techniques with regard to synthesis, characterization, physical and electrochemical properties, and applications of nanoscale materials pertaining to advanced electrochemical power sources. The goal of this book is to render an update of the current advancement in the field of electrochemical power sources with special reference to nanotechnology. A vari-
ety of advanced nanomaterials, such as transition metal oxides, phosphates, silicates, and conversion electrodes, together with carbonaceous materials that include carbon nanotubes, nanorods, and mesoporous carbons, are discussed by notable authorities of this exhilarating field. The book presents a balanced mix of theoretical and experimental approaches adopted over these years in the advancement of lithium-based power sources (Li-ion and Li–Air) and electrochemical capacitors. The book is a compact reference source for students, scientists, engineers, and specialists in various fields, including electron devices, electrochemistry, electrical engineering, nanotechnology, and solid state physics.

S. R. S. Prabaharan
M. S. Michael
Summer 2014