1D electron correlation, quantum spin computation and, 88–90
1D superconductors, induced resistance in, 19–23
μ^* concept, 195

A15 Cs$_3$C$_{60}$, 98
Alkali-doped fullerene compounds, 96–98
A15 Cs$_3$C$_{60}$, 98
fcc A$_3$C$_{60}$, 96–97
Alkali-doped fullerides, 220–226 aims, 220–221
Hubbard–Holstein model, 222–225
room-temperature superconductors, 225–226
Andreev reflection, 45, 122
point of contact spectroscopy and, 40–42
test of, 48–49
Angle-resolved photoemission spectroscopy (ARPES), 266
study of C$_6$Ca, 179–190
electronic structure of C$_6$Ca, 184–186
electron–phonon interaction in, 188–189
fabrication of C$_6$Ca single crystal, 184
introduction, 180–181
models for mechanism of superconductivity, 180–181
photoemission spectroscopy, 181–184
superconducting gap and symmetry in C$_6$Ca
Antiferromagnetism metallic state (AFMM), 277

Ballistic transport regime, 120–122
Bardeen–Cooper–Schrieffer (BCS), 61, 79, 110, 112, 160–161
like surface superconductivity for quadratic spectrum, 252–255
specific heat expression, 26
type superconductors, 61, 79

B-dimer, 275
Berezinskii–Kosterlitz-Thouless transition, 2, 30
Bloch–Grüneisen formula, 165–167, 173
11B-NMR spectrum analysis, 269–272
Bogoliubov–de Gennes (BdG) equations, 245–249
Boron-doped diamond (BDD), 70–71, 265–279
superconductivity and local structure in 11B-NMR spectrum analysis, 269–272
experimental, 268–269
introduction, 266–268
low symmetric B(2) site, local structure of, 274–277 summary, 278–279
T_c vs. effective carrier density, 272–274

Boron-doped SiC, superconductivity in, 281–292
characterization, 283 conclusion, 292 discussion, 291–292
electrical resistivity, 287–291
H–T phase diagram, 287–291
introduction, 281–283
magnetic response, 284
specific heat measurement, 285–287

Boron-doped single-walled CNTs (B-SWNTs), 70–79
Meissner effect, 73–79
pulsed laser vaporization technique and, 80–81 substitutional, characterization of, 72–73
thin films of, 71–72

Bragg peaks, 170–172
Brillouin zone (BZ), 7, 184, 187, 190, 211, 238

Bundled CNTs, 102–104

CaC$_6$, 159–174
graphite-intercalated compounds, 160–165
introduction, 159–161
salient aspect of
superconductivity in, 161
structural instability for T_c drop, 168–172
equation of state, 170–171
high-pressure X-ray diffraction experiment, 169
pressure-induced order–disorder phase transition, 171–172
transport and superconducting properties of, 165–167
effects of high pressure on, 167–168
C$_6$Ca, ARPES study of, 179–190
band structure of, 184–185
electronic structure of, 184–186
electron–phonon interaction in, 188–189
fabrication of, single crystal, 184
introduction, 180–181
magnetic susceptibility of, 184–185
models for mechanism of superconductivity, 180–181
photoemission spectroscopy, 181–184
superconducting gap and symmetry in, 187–188

Carbon nanotubes (CNTs)
carrier-doped carbon materials and, 98–106
bundled CNT, 103–104
density of states at Fermi level, 99, 101–103
DWCNT, 104–105
electronic structures of impurity-doped, 99–100
impurity level, 100–102
limitation and implementation toward higher T_c, 109–150
electron transport properties of, 120–125
emergence of superconductivity, 109–112
higher T_c superconductivity, 112–114
mechanism of superconductivity in, 147–148
outstanding issues, 140–149
perspective remarks, 149–150
superconductivity in, 125–139
tubular morphology and reduced dimensionality, 114–125
one-dimensional electron correlation and, 59–90
boron-doped single-walled CNTs, 70–79
multi-walled CNTs, 59–70
pressure-induced superconductivity, 79–88
1D electron correlation and quantum spin computation, 88–90
van Hove singularities in, 37–55
Andreev reflection, 40–42
experimental challenges, 39–40
gate voltage as density of states, 50–54
with normal electrodes, 46–50
proximity effect, 42–46
Carbon nanotubes as field-effect transistors (CNFETs), 43–44
Carrier-doped carbon materials, superconductivity in, 95–106
alkali-doped fullerene compounds, 96–98
A15 Cs$_3$C$_{60}$, 98
cubic A$_3$C$_{60}$, 96–97
carbon nanotube, 98–105
bundled CNT, 103–104
density of states at Fermi level, 99, 101–103
DWCNT, 104–105
electronic structures of impurity-doped, 99–100
impurity level, 100–102
Charge density wave–response function (CDW), 13
Chemical vapor deposition (CVD) method, 148
Classical transport regime, 122–125
CNT@AFI system, 2–6
Coherence length, 215–216
Conventional weak-coupling BCS regime, 273
Coulomb interaction, 14
Coupling constant, multiplicative RG for, 11
Crystal grain size, 291–292
DC magnetic susceptibility, of boron-doped SiC, 284
Debye temperature, 273–274, 285–286
Density functional theory for superconductors (SCDFT), 96
application and discussion, 200–201
gap equation in, 198–200
Hohenberg–Kohn–Sham theorem, 197–198
Dimensional crossover transition, characteristics of, 23–32
Doped carbon nanotubes, 137–139, 148–149
DR model, for superconductivity mechanism, 180–181
DWCNT, 104–105
Effective carrier density vs. T_c, 272–274
Electrical resistivity, of boron-doped SiC, 287–291
Electric field gradient (EFG), 269
second-order perturbation of, 271
Electron dispersion, in rhombohedral graphite, 236–239
Electron–electron (e–e) coupling, 113–114, 118, 123–125, 130, 135, 140–143, 149
signatures of, 143–149
ferromagnetic catalysts and doping, 148–149
Raman spectroscopy, 144–145
spin degree of freedom, 145–147
superconductivity mechanism in CNTs, 147–148
thermopower behavior, 143–144
Electron–phonon interaction, in C₆Ca, 188–189
Electron transport properties, of CNTs, 120–125
ballistic transport regime, 120–122
classical transport regime, 122–125
TLL description, extensions of, 125
Eliashberg function \(\alpha^2 F(\omega) \), 194, 196
Energy conservation rule, 181–182
Entirely end-bonded MWNTs, 62–65, 131, 133–134
EPMA analysis, 283
Fabry–Pérot interference pattern, 43–44, 51–52, 122
Fast Fourier transform (FFT) technique, 269
Fcc \(A_3C_{60} \), 96–97
Ferromagnetic catalysts and doping, 148–149
Field-emission scanning electron microscope (FESEM), 81
First-principles density functional calculations, 275–276
Flat band, 232–233
doping in, 250–251
surface superconductivity in finite array, 251–252
4-Angstrom carbon nanotubes (CNTs), 1–33
CNT@AFI system, 2–6
dimensional crossover transition, characteristics of, 23–32
induced resistance in 1D superconductors, 19–23
introduction, 2
ultrathin (5,0) CNT arrays, RG treatment of, 6–19
Gap equation, in SCDFT, 198–200
Gate voltage, 43
current as a function of, 44
as density of states, 50–54
temperature and, 44–46
zero-bias differential conductance in, 52–53
Ginzburg–Landau theory, 19, 23, 25–26, 287, 290
Graphene to nanotube, 114–116
Graphite
Fermi surface of, 186
originated diamagnetism, 82–85
rhombohedral. See Rhombohedral graphite
Graphite intercalation compounds (GICs), 160, 167, 173–174
CaC₆, 159–174
C₆Ca, 179–190
crystal and electronic structures of, 161–165
\(G_0W_0 \) approximation with application to, 202
polar semiconductors, 205–207
weak-coupling region, 202–205
historical survey, 207–210
key parameters to control superconductivity, 209, 213–214
standard model for, 209, 211–213
optimum \(T_c \), 209, 214–215
\(G_0W_0 \) approximation with application to GICs, 202
polar semiconductors, superconductivity in, 205–207
weak-coupling region, pairing interaction in, 202–205
Hamiltonian, 7, 9, 194, 202, 205, 214, 217, 236, 238–239
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>High T_c superconductivity (HTSC), continues to increase</td>
<td>110–111, 112–114</td>
</tr>
<tr>
<td>Hohenberg–Kohn–Sham theorem</td>
<td>197–198</td>
</tr>
<tr>
<td>Hohenberg–Mermin–Wagner theorem</td>
<td>5–6, 18</td>
</tr>
<tr>
<td>Homogeneously hole-doped diamond</td>
<td>277</td>
</tr>
<tr>
<td>H–T phase diagram, of boron-doped SiC</td>
<td>287–291</td>
</tr>
<tr>
<td>Hubbard–Holstein model</td>
<td>222–225</td>
</tr>
<tr>
<td>Inelastic X-ray scattering</td>
<td>266</td>
</tr>
<tr>
<td>Insulator-to-metal transition</td>
<td>282–283</td>
</tr>
<tr>
<td>Inter-shell coupling</td>
<td>130–137</td>
</tr>
<tr>
<td>Inter-tube coupling</td>
<td>130–137</td>
</tr>
<tr>
<td>Josephson coupling</td>
<td>6, 24–25, 28</td>
</tr>
<tr>
<td>Kondo effect</td>
<td>47, 89, 122, 143</td>
</tr>
<tr>
<td>Korringa’s relation</td>
<td>274</td>
</tr>
<tr>
<td>Lattice parameter</td>
<td>283</td>
</tr>
<tr>
<td>Low-energy spectrum in normal state</td>
<td>240–244</td>
</tr>
<tr>
<td>Luttinger liquid model</td>
<td>6</td>
</tr>
<tr>
<td>Matsubara frequency</td>
<td>202</td>
</tr>
<tr>
<td>McMillan’s formula</td>
<td>194, 273</td>
</tr>
<tr>
<td>Meissner diamagnetism</td>
<td>82–83</td>
</tr>
<tr>
<td>Meissner effect</td>
<td>73–79</td>
</tr>
<tr>
<td>correlation of doping concentration with, 77–79</td>
<td></td>
</tr>
<tr>
<td>magnetization and identification of, 73–77</td>
<td></td>
</tr>
<tr>
<td>Metal-to-insulator transition (MIT)</td>
<td>266</td>
</tr>
<tr>
<td>Microwave plasma-assisted chemical vapor deposition (MPCVD) method</td>
<td>266</td>
</tr>
<tr>
<td>Monte Carlo (MC) simulations</td>
<td>2</td>
</tr>
<tr>
<td>Mott–Hubbard insulating state</td>
<td>112</td>
</tr>
<tr>
<td>Mott insulator with antiferromagnetic order</td>
<td>277</td>
</tr>
<tr>
<td>Multi-walled CNTs (MWNTs), correlation of superconductive with TLL states</td>
<td>65–70</td>
</tr>
<tr>
<td>entirely end-bonded MWNTs, 62–65</td>
<td></td>
</tr>
<tr>
<td>interplay of the SC with the TLL, 61–62</td>
<td></td>
</tr>
<tr>
<td>Nanowires GL free energy of individual</td>
<td>25–27</td>
</tr>
<tr>
<td>quasi-1D, 25</td>
<td></td>
</tr>
<tr>
<td>transverse phase fluctuations inside, 28–29</td>
<td></td>
</tr>
<tr>
<td>Nuclear quadrupole resonance (NQR) frequency</td>
<td>269</td>
</tr>
<tr>
<td>Nuclear spin-lattice relaxation rate</td>
<td>274</td>
</tr>
<tr>
<td>One-dimensional electron correlation, carbon nanotubes and, 59–90</td>
<td></td>
</tr>
<tr>
<td>boron-doped single-walled CNTs, 70–79</td>
<td></td>
</tr>
<tr>
<td>introduction, 59–60</td>
<td></td>
</tr>
<tr>
<td>multi-walled CNTs, 59–70</td>
<td></td>
</tr>
<tr>
<td>1D electron correlation and quantum spin computation, 88–90</td>
<td></td>
</tr>
<tr>
<td>pressure-induced superconductivity, 79–88</td>
<td></td>
</tr>
<tr>
<td>ONK model, for superconductivity mechanism, 180–181</td>
<td></td>
</tr>
<tr>
<td>Optical phonons</td>
<td>266</td>
</tr>
<tr>
<td>Optimum T_c, prediction of</td>
<td>209, 214–215</td>
</tr>
<tr>
<td>Pairing interaction interpolation formula for</td>
<td>219–220</td>
</tr>
<tr>
<td>in strong-coupling region</td>
<td>216–219</td>
</tr>
</tbody>
</table>
Phononmediated interaction, 14
Point contact spectroscopy, 40–42
Polar semiconductors,
superconductivity in, 205–207
Powder X-ray diffraction (PXRD),
282
Pressure-dependent magnetization
measurements, 82–85
Pressure-dependent Raman
spectroscopy, 86–88
Pressure-induced
superconductivity at 19K,
136–137
in B-doped buckypapers, 79–88
pressure-dependent
magnetization, 82–85
pressure-dependent Raman
spectroscopy, 86–88
sample preparation, 80–81
Pristine carbon nanotubes,
127–137
inter-shell coupling, 130–137
inter-tube coupling, 130–137
Proximity-induced
superconductivity, 127–128
Quantum spin computation, 1D
electron correlation and, 88–90
Raman spectroscopy, 144–145
Renormalization group (RG)
multiplicative, for coupling
constant, 11
ultrathin (5,0) CNT arrays,
treatment of, 6–19
Response functions,
four types of, 13
Rhombohedral graphite, 231–262
Bogoliubov–de Gennes (BdG)
equations, 245–249
electron dispersion in, 236–239
Fermi line of, 241
introduction, 232–236
low-energy spectrum in
normal state, 240–244
spectrum of, 242
surface superconductivity in,
249–260
BCS-like, for quadratic
spectrum, 252–255
effect of fluctuations,
257–258
flat band, 250–252
supercurrent, 255–257
twinning boundary
superconductivity,
258–260
Room-temperature
superconductors, 225–226
Schrödinger equation, 240
Secondary ion-mass spectroscopy
(SIMS), 267–268
Silicon carbide, 282
Single (5,0) CNT, scaling results for,
14–16
Single (5,0) nanotube, RG treatment
of, 10–13
Singlet superconductivity response
function (SS), 13
Single wall carbon nanotube
(SWNT), 3, 114, 127,
129–130
Sommerfeld parameter, 285
Spark plasma sintering (SPS),
135–136
Specific heat measurements,
of boron-doped SiC, 285–287
Spin density wave (SDW),
145–147
Strong coupling approach,
application to fullerides,
215–226
alkali-doped fullerides,
220–226
aims, 220–221
Hubbard–Holstein model,
222–225
room-temperature
superconductors,
225–226
coherence length, 215–216
interpolation formula for pairing-interaction, 219–220
pairing interaction in, 216–219
Substitutional boron-doped single-walled CNTs, 72–73
Superconducting density functional theory, 161
Superconductivity
in boron-doped diamond, 265–278
in boron-doped SiC, 281–292
carrier-doped carbon materials in, 95–106
in carbon nanotubes. See Carbon nanotubes
emergence of, 109–112
in 4-Angstrom carbon nanotubes, 1–33
in graphite intercalated CaC$_6$, 159–174
high-resolution ARPES study, of CaC$_6$, 179–190
key parameters to control, 209, 213–214
limitation and implementation toward higher T_c, 109–150
in one-dimensional electron correlation, 59–90
rhombohedral graphite, surface, 231–262
transition temperature (T_c), prediction of, 109–111, 193–226
twinning boundary, 258–260
at van Hove singularities in carbon nanotubes, 37–55
Superconducting parameters, from different measurements, 5
Superconductor junctions, proximity effect in, 42–46
Supercurrent, 255–257
Surface superconductivity, 249–260
BCS-like, for quadratic spectrum, 252–255
effect of fluctuations, 257–258
flat band, 250–251
in finite array, 251–252
supercurrent, 255–257

twinning boundary
superconductivity, 258–260
Symmetric B(2) site, local structure of, 274–277

T_c vs. effective carrier density, 272–274
Thermal Green's function method, 202, 203
Thermodynamic critical field, 290
Thermopower behavior, 143–144
Thin array of (5,0), scaling results for, 16–19
Tomonaga–Luttinger liquid (TLL) correlation of superconductive with, 65–70
extensions of, 125
Transition temperature (T_c), prediction of superconducting, 109–111, 193–226
conclusion, 226
density functional theory for superconductors
application and discussion, 200–201
gap equation in, 198–200
Hohenberg–Kohn–Sham theorem, 197–198
graphite intercalation compounds (GICs)
G_0W_0 approximation with application to, 202–207
historical survey, 207–210
key parameters to control superconductivity, 209, 213–214
optimum T_c, 209, 214–215
standard model for, 209, 211–213
introduction, 193–197
strong coupling approach, application to fullerides, 215–226
alkali-doped fullerides, 220–226
coherence length, 215–216
interpolation formula for pairing-interaction, 219–220
pairing interaction in, 216–219
Triplet superconductivity response function (TS), 13
Tubular topology, dimensionality and, 116–117
Tubular morphology, reduced dimensionality and, 114–125
$T-U-S-\omega$ of phase diagram, 117–120
Twinning boundary superconductivity, 258–260

Ultrathin (5,0) CNT arrays, RG treatment of, 6–19
linearization of (5,0) CNT band and coupling constants, 7–10
electron–electron interactions (5,0) CNT, 8–9
six interaction channels in (5,0) CNT, 9–10
single (5,0) CNT, scaling results for, 14–16
single (5,0) nanotube, 10–13
thin array of (5,0), scaling results for, 16–19
van Hove singularities, in carbon nanotubes, 37–55
Andreev reflection, 40–42
experimental challenges, 39–40
gate voltage as density of states, 50–54
introduction, 38–39
with normal electrodes, 46–50
proximity effect, 42–46

Weak-coupling region, pairing interaction in, 202–205
Wide-gap semiconductor, 282
Zeeman interaction (H_Z), 268–269
Zero-bias conductance peak, 46–50
Zero-bias differential conductance, in gate voltage, 52–53