“Donald MacLurcan has drawn on the skills and knowledge of a range of disciplines to consider the complex question of the impacts of nano technology. He has assembled an impressive body of evidence to show that nano technology as presently developed offers little hope for a more equitable world. This is a very significant conclusion, as we are often urged to believe that new technology can help the development aspirations of poor countries. The subject is important, the writing is clear and the case is compelling.”

Prof. Ian Lowe
President, Australian Conservation Foundation

“Written in direct and simple language, this book is relevant not only for academia but also for civil society groups and the broader public.”

Prof. Noela Invernizzi
Federal University of Paraiba, Brazil

“Dr MacLurcan makes a significant contribution towards filling the void in the contemporary understanding of the social justice dimensions related to research, development and commercialisation of nano technology, especially for the global South. Through the presentation of rich and detailed empirical data, and grounded in theories of development and technological change, MacLurcan provides valuable insights into the relationships between new technologies and hopes for a more equitable world.”

Dr Kristen Lyons
Griffith University, Australia

This book is the world’s first comprehensive assessment of nano technology’s foreseen implications for global development and provides important groundwork for subsequent research. The book places nano technology’s emergence within a broad historical and contemporary global context, while developing and testing an interpretative framework through which to assess nano technology’s claims. It establishes great clarity about the nature of global engagement with nano technology research and development, revealing surprising scenarios, unacknowledged by most mainstream commentators. The book concludes by exploring a range of perspectives from Thailand and Australia about nano technology’s foreseen implications for global inequity, thereby providing important ground for reflection.

Dr Donald MacLurcan is an Honorary Research Fellow with the Institute for Nanoscale Technology at the University of Technology, Sydney, Distinguished Fellow with the U.K.-based Schumacher Institute for Sustainable Systems, and Co-Founder of the Post Growth Institute, an international organization inspiring and equipping others to explore, find, and implement pathways to global prosperity that do not rely on economic growth. He holds a PhD in social science from the University of Technology, Sydney, and is widely published, with his work on nano technology having been translated into more than 20 languages. He is co-editor of the book Nano Technology and Global Sustainability (CRC Press, 2011) and a Fellow of the Royal Society of the Arts.
NANOTECHNOLOGY
AND
GLOBAL EQUALITY
DONALD MACLURCAN

NANOTECHNOLOGY
AND
GLOBAL EQUALITY

PAN STANFORD PUBLISHING
“Anyone who believes exponential growth can go on forever in a finite world is either a madman or an economist.”

—Kenneth Boulding
Acknowledgements

My deepest thanks go to Associate Professor James Goodman for venturing with me into the unknown and guiding me so wisely. To Associate Professor Mike Ford, and Professor Michael Cortie, thank you for your confidence in sponsoring me as a researcher from outside the sciences and for the valuable direction, insights and opportunities you provided. To my colleagues from the Institute for Nanoscale Technology: Dr Carl Masens, Dr Benjamin Soule de Bas, Dr Burak Cankurtaran and Dr Dakrong Pisuwan, thank you for welcoming me to your ranks, and to my office-companion and mentor Dr David Xu, my heartfelt appreciation. To the staff from the Faculty of Arts and Social Sciences at the University of Technology, Sydney, particularly Associate Professor Paul Ashton, Carolyn Carter and Juleigh Slater, thank you for your guidance and administrative assistance. Special thanks to Dr Patrick Tooth for your assistance with Endnote™ and Dr Leigh Wood for your help with NVivo. To all the interviewees from Thailand and Australia and Emeritus Professor Tony Moon and Dr Patarapong Intarakumnerd for assisting in the facilitation of this research, thank you for making my ‘field’ experience so valuable. Thanks to Drs Noela Invernizzi and Guilermo Foladori for adding immense depth to my inquiries and special thanks to Dr Sue-Anne Wallace, Dr Natalia Radywyl, Joe Fitzgerald and Kate and James Maclurcan for copyediting, proofreading and advising on matters of structure for various parts of my work. To the Bracken, Coote, Kremer, Inana, Logan, Norton-Knight, and Zehtner families, thank you for caring for me so warmly on my many ‘last’ writing retreats. To my family and friends, particularly Andrew McMillan, Lauren Simpson, Geoff Moore, Wafa Chafic, Suyin Hor, Tori Saint, Mickey Martin, Anna Louis, Jess and Jon Watkins and Jake and Fiona Logos who long endured my struggles with this work, thank you for your ongoing care and concern. Finally, to my partner, Julie Dardel, thank you for your assistance, patience and ever-loving support.
This book’s journey began with an upturned brochure in a park. I found it walking home one afternoon, spread open to a page about courses at the University of Technology, Sydney on nanotechnology — an area ‘set to revolutionise industrial processes’. Whilst the brochure’s content made for an interesting read, I was far from a scientist and, once binned, I didn’t give it another thought… until two weeks later. I was having a conversation with a staff member at that same university, when the word ‘nanotechnology’ popped into my head. I casually asked this person if they knew anything about the subject. “No, but I think there are people on level 16 doing that stuff”, came the reply. Sure enough, I easily found the newly formed ‘Institute for Nanoscale Technology’ and, upon entering, was greeted by the Associate Director, Mike Ford. I deferentially explained that my background was not in science and that I was merely looking for more information, given my surprise at finding a brochure about the Institute in a park ten kilometres away. I had been in the room less than five minutes when Dr Ford proposed that, given the Institute was looking to ‘branch out’, I undertake research looking at nanotechnology’s social implications. I sat stunned. Mike and I had never met, I had little idea what ‘research’ entailed and I still did not have a clue as to what nanotechnology was, let alone the nature of its social implications! Revisiting the basic research proposal I submitted a week later still brings me a laugh, but the novelty of having an ‘outsider’ in a scientific institute must have blinded everyone to my lack of research experience because three months later I sat down in an office vacated by a visiting professor and started to think about nanotechnology.

At this time, I had been working with The Fred Hollows Foundation, a non-governmental organization whose work in reducing avoidable blindness in the global South had pioneered new technologies and approaches to capacity building. I thus leapt forward with my research, having decided to explore nanotechnology’s potential implications for the South and global inequality.
Through this journey I have been able to look in a broad, exploratory manner, at a largely uncharted area that remains surprisingly understudied. Given my research began nine years ago, much of the work in this book is best viewed as a snapshot from and reflection upon an early period of nanotechnology’s development — although, arguably, the relevance of many of the insights remain.

Of real privilege has been the chance to ride at ‘the boundaries’, engaging with the very different approaches of a sociologist and a physicist who oversaw my research. Working across faculties, whilst exploring the interdisciplinary field of nanotechnology, has only added to my interest.

As my understanding and critique of development has deepened, it has become clearer to me that nanotechnology is, at its sociological best, a medium to assess the processes and possible trajectories accompanying technological futures. In an unjust world, where struggles to avoid the co-option and mainstreaming of ideals are ever-present, there would seem to be value in bold creativity, grounded in existing wisdom.

As this book goes to print, I realise that its writing has helped uncover in me a passion for exploring alternatives to the ‘growth’ paradigm and a particular interest in collaborative junctures between feminist, indigenous, peasant, Marxist and ecological thought. I now see ‘the boundaries’ as exciting spaces for new reflexivity, and finally recognise that the greatest resilience to avoiding co-option lies, as it always has, at the periphery.

Donnie Maclurcan
Contents

Acknowledgements vii

Preface ix

1. Introduction 1
 1.1 Central Questions 9
 1.2 Overview of My Approach 12
 1.3 General Limitations 14
 1.3.1 Self-Reflexivity 15
 1.4 Chapter Outlines 16

2. Methodology 21
 2.1 Methods 25
 2.1.1 Literature Review 25
 2.1.2 Quantitative 26
 2.1.2.1 National levels of R&D engagement 26
 2.1.2.2 International research participation 28
 2.1.2.3 International patenting 29
 2.1.3 Qualitative 33
 2.1.3.1 Key informant interviews 34
 2.1.3.2 Thai nanotechnology practitioner surveys 39
 2.2 Conclusion 40

3. Development, Technology and Inequity 45
 3.1 The Creation of Inequity and Establishment of Development Debates 45
 3.2 Foundational Approaches 47
 3.2.1 Modernisation Theory 48
 3.2.1.1 Western technology and development 51
 3.2.2 Dependency Theory 55
 3.2.2.1 State-led, endogenous innovation 57
 3.2.3 Alternative Development Theory 58
 3.2.3.1 The critique of technology 59
 3.2.3.2 Intermediate, appropriate technology 65
3.3 Contemporary Approaches

- **3.3.1 Neo-Liberalism**
 - 3.3.1.1 Corporate technologies 71
- **3.3.2 Alter-Globalisation**
 - 3.3.2.1 Emerging technologies and inequity 80
- **3.3.3 Mainstream Alternative Development?**
 - 3.3.3.1 Techno-fixes for human development 99
- **3.3.4 Post-Development**
 - 3.3.4.1 Technology as power, within biophysical limits 107
- **3.3.5 Reflexive Development**
 - 3.3.5.1 Technology and reflexivity 112

3.4 Conclusion and My Framework for Technological Assessment 115

4. Nanotechnology, Development and Inequity 125

- **4.1 Understanding Nanotechnology** 125
- **4.2 The State of Play** 128
- **4.3 Interpreting the State of Play: Instrumentalist versus Contextualist Perspectives** 133
- **4.4 Innovative Capacity** 135
 - 4.4.1 Instrumentalist Approaches to Innovative Capacity 136
 - 4.4.2 Contextualist Approaches to Innovative Capacity 144
- **4.5 Technological Appropriateness** 148
 - 4.5.1 Instrumentalist Approaches to Technological Appropriateness 151
 - 4.5.1.1 Energy and the environment 155
 - 4.5.1.2 Agriculture 157
 - 4.5.1.3 Water 158
 - 4.5.1.4 Healthcare 158
 - 4.5.1.5 Construction 160
 - 4.5.2 Contextualist Approaches to Technological Appropriateness 161
- **4.6 Approaches to Governance** 173
 - 4.6.1 Instrumentalist Approaches to Governance 175
 - 4.6.2 Contextualist Approaches to Governance 181
- **4.7 Conclusion** 187
Contents

5. **The State of Play** 197
 5.1 Global Engagement 197
 5.2 An Exclusive ‘Global’ Nanotechnology Dialogue 199
 5.3 Early Patent Control and Orientation 202
 5.4 Conclusion 208

6. **Understanding Nanotechnology** 213
 6.1 Characteristics 213
 6.2 Perceptions 216
 6.3 Near-Term Nanotechnology or Molecular Manufacturing? 218
 6.4 Conclusion 220

7. **Innovative Capacity** 223
 7.1 Understanding the Nanodivide and Its Constructs 223
 7.2 The South Left Behind 225
 7.3 New Opportunities 237
 7.3.1 Availability and Demand of Human Resources 241
 7.3.2 Infrastructure 243
 7.3.3 International Knowledge 243
 7.3.4 Research and Development Costs 245
 7.3.5 Comparative Advantage 246
 7.3.6 Private Sector Support 246
 7.4 Conclusion 247

8. **Technological Appropriateness** 251
 8.1 Benefits for the South 251
 8.1.1 A New Paradigm 251
 8.1.1.1 Control 252
 8.1.1.2 Consumption and costs 253
 8.1.1.3 Universality and complementarity 253
 8.1.1.4 Potential to unify 254
 8.1.1.5 A sustained revolution 255
 8.1.2 Areas of Application 256
 8.1.3 Nanotechnologies and Appropriateness 261
 8.2 Contextual Challenges: Old Rhetoric, Old Reality 264
 8.2.1 Technical Claims 265
 8.2.2 Development Claims 267
8.3 Societal Implications 276
 8.3.1 Risk 276
 8.3.2 Ethical 280
 8.3.3 Legal 284
 8.3.4 Social 285
8.4 Conclusion 287

9. Approaches to Technological Governance 291
 9.1 How to Become ‘Nano-Innovators’ 291
 9.1.1 Planning 292
 9.1.2 Resourcing 299
 9.1.3 Supporting 305
 9.2 Ensuring Appropriateness 314
 9.2.1 Keeping Open to a Balanced Approach 314
 9.2.2 Working at the Intersection of Market and Community 315
 9.2.3 Building on Equity-Enhancing Resources 317
 9.3 Responding to Risks 319
 9.3.1 Appropriate Regulation 320
 9.3.2 Developing Knowledge about Implications 324
 9.3.3 The Public and Nanotechnology 327
 9.4 Conclusion 340

10. Conclusions 345
 10.1 Key Themes and Findings 345
 10.1.1 Understandings 346
 10.1.2 Innovative Capacity 347
 10.1.3 Technological Appropriateness 349
 10.1.4 Approaches to Governance 351
 10.1.5 Hope for a More Equitable World? 353
 10.2 Limitations and Further Avenues for Research 354
 10.3 Implications and Recommendations 357

Appendix A Justification of Interviewee Nationalities for My Qualitative Study 361
Appendix B Health-Related Patent Classifications 365
Appendix C Patent Rules 367
Appendix D Top 10 Nanotechnologies for the Developing World (Singer et al., 2005) 369
Appendix E World Bank List of Economies (April 2004) 373
Appendix F Classification of Countries: Development Assistance Committee List of Aid Recipients, 2003 (adapted from OECD, 2003) 377
Appendix G Thai Key Informant Details 381
Appendix H Australian Key Informant Details 383
Appendix I Key Informant Biographies (2004) 385
Appendix J Responses from Thai Nanotechnology Practitioners 393

Bibliography 395

Index 445
List of Figures

Figure 1.1. Physics, Biology and Chemistry Meet in Nanotechnology

Figure 1.2. Short- and Medium-Term Nanotechnology Applications by Category

Figure 1.3. Products Incorporating Nanotechnology that are Currently in the Market

Figure 3.1. Who Decides Future Science? Comparison between Northern and Southern Countries

Figure 3.2. Share of Bacillus Thuringiensis Patents by Type of Holder

Figure 3.3. Similar HDI, Different Income and Similar Income, Different HDI

Figure 5.1. Graphical Representation of Global Nanotechnology, by Country and Level of Activity

Figure 5.2. Distribution of 1975–2004 Health-Related Nanotechnology Patent Activity amongst the Top Seven Holders, by Country

Figure 5.3. Distribution of 2004 Health-Related Nanotechnology Patent Activity amongst the Top Seven Holders, by Country

Figure 5.4. Global Distribution of 1975–2004 Health-Related Nanotechnology Patent Share, by Region

Figure 5.5. Categorisation of 1975–2004 Health-Related Nanotechnology Patents by Specific Utility (Health Condition)

Figure 8.1. Educational Backgrounds of Thai Nanotechnology Practitioners

Figure 8.2. Areas of Research by Thai Nanotechnology Practitioners

Figure 9.1. Strategic Nanotechnology Clusters Coordinated by the National Nanotechnology Centre of Thailand
List of Tables

Table 2.1. Categorisation of National Nanotechnology Activity 27
Table 2.2. Classifications and Terms Used for Health-Related Nanotechnology Patent Searches 31
Table 3.1. Countries with Biotechnology Production or Research Activity 75
Table 3.2. Nine Criteria for Democratic Technologies 114
Table 3.3. An Assessment Framework for New Technologies 114
Table 3.4. Themes and Criteria for Assessing Technological Reflexivity towards a More Equitable World 117
Table 4.1. Selected Developing Countries and Their Nanotechnology Activity 129
Table 4.2. Global Government Funding for Nanotechnology, 1997–2006 129
Table 4.3. Global Nanotechnology Publications by Nationality, 1997–1999 131
Table 4.4. Top 20 Patent Assignees, by Country, for Nanotechnology Patents Registered with USPTO, 2003 131
Table 4.5. Top Nanotechnology Patent Assignees with the USPTO, by Nationality and Sector, 2005 132
Table 4.6. Top 10 Applications of Nanotechnology for Developing Countries, Ranked by Score 154
Table 4.7. Principles for Adequate Nanotechnology Oversight 183
Table 5.1. Global Distribution of Nanotechnology Activity, by Country and Classification 198
Table 5.2. Distribution of 2004 Nanotechnology Conferences or Events, by Host Country 200
Table 5.3. Breakdown of Country Representation at Key Nanotechnology Conferences (2003–2005) by Presenter or Attendee 201
Table 5.4. Total Number of Health-Related Nanotechnology Patents, by Country (1975–2004) 202
Table 5.5. Distribution of Health-Related Nanotechnology Patent Activity (1975–2004), by Sectors 205
Table 5.7. Categorisation of 1975–2004 Health-Related Nanotechnology Patents by General Utility 207
Table 6.1. The Six Fundamental Characteristics of Nanotechnology 214
Table 8.1. Potential Applications Resulting from Areas of Research by Thai Nanotechnology Practitioners 271
Table 9.1. Three Key Benefits of Clustering for Nano-Innovation 306
Table 9.2. Guidelines for Respective Contributions to North-South Partnerships 312
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A.</td>
<td>Justification of Interviewee Nationalities for My Qualitative Study</td>
<td>361</td>
</tr>
<tr>
<td>Appendix B.</td>
<td>Health-Related Patent Classifications</td>
<td>365</td>
</tr>
<tr>
<td>Appendix C.</td>
<td>Patent Rules</td>
<td>367</td>
</tr>
<tr>
<td>Appendix D.</td>
<td>Top Ten Nanotechnologies for the Developing World</td>
<td>369</td>
</tr>
<tr>
<td>Appendix E.</td>
<td>World Bank List of Economies (April 2004)</td>
<td>373</td>
</tr>
<tr>
<td>Appendix F.</td>
<td>Classification of Countries: Development Assistance Committee List of Aid Recipients, 2003</td>
<td>377</td>
</tr>
<tr>
<td>Appendix G.</td>
<td>Thai Key Informant Details</td>
<td>381</td>
</tr>
<tr>
<td>Appendix H.</td>
<td>Australian Key Informant Details</td>
<td>383</td>
</tr>
<tr>
<td>Appendix I.</td>
<td>Key Informant Biographies (2004)</td>
<td>385</td>
</tr>
<tr>
<td>Appendix J.</td>
<td>Responses from Thai Nanotechnology Practitioners</td>
<td>393</td>
</tr>
</tbody>
</table>
Commonly Used Acronyms

AFM: atomic force microscope
AMO: atomically modified organism
APEC: Asia Pacific Economic Co-operation
BIOTEC: National Centre for Genetic Engineering and Biotechnology (Thailand)
DNA: deoxyribonucleic acid
ELSI: ethical, legal and social implications
EPO: European Patent Office
ETC Group: Action Group on Erosion, Technology and Concentration
EPO: European Patent Office
E.U.: European Union
FDA: Food and Drug Administration
GDP: gross domestic product
GM: genetically modified
GMO: genetically modified organism
IP: intellectual property
IPRs: intellectual property rights
JPO: Japanese Patent Office
LDC: least developed country
MDG: millennium development goal
MM: molecular manufacturing
MTEC: National Metal and Materials Technology Centre (Thailand)
NANOTEC: National Nanotechnology Centre (Thailand)
NECTEC: National Electronics and Computer Technology Centre (Thailand)
NGO: non-governmental organisation
NNI: National Nanotechnology Initiative (United States of America)
NSF: National Science Foundation (United States of America)
NSTDA: National Science and Technology Development Agency (Thailand)
OECD: Organisation for Economic Cooperation and Development
OTOP: One Tambon One Product
RS&RAE: Royal Society and Royal Academy of Engineering
R&D: research and development
STM: scanning tunnelling microscope
TRIPs: Agreement on Trade Related Aspects of Intellectual Property Rights
U.K.: United Kingdom
U.N.: United Nations
UNCTAD: United Nations Conference on Trade and Development
UNDP: United Nations Development Program
UNESCO: United Nations Educational, Scientific and Cultural Organization
U.S.: United States of America
USPTO: United States Patent and Trademark Office
UTJCB: University of Toronto Joint Centre for Bioethics
WHO: World Health Organisation
WTO: World Trade Organisation
Molecular Manufacturing: An anticipated technology based on Richard Feynman's vision of factories using nanoscale machines to build complex products, including additional nanoscale machines.

Nanometre: One billionth of a metre or 10^{-9} metres.

Nanoparticle: A particle having one or more dimensions of the order of 100 nanometres or less.

Nanoscale: A length scale between 1–100 nanometres and the level of most atoms and some molecules.

Nanotechnology: The understanding and control of matter at dimensions between 1 and 100 nanometres, where unique phenomena enable novel applications.

Nanotube: A structure comprising atoms that form a hollow, nanoscale cylinder.

Quantum Dot: Semiconducting nanocrystals that differ in their ability to absorb and emit energy, based on the size of the crystal.

Quantum Mechanics: A set of scientific principles describing the known behavior of energy and matter that predominate at the atomic and subatomic scales.

Quantum Physics: The branch of physics which studies matter and energy at the level of atoms and other elementary particles, and substitutes probabilistic mechanisms for classical Newtonian ones.

Self-assembly: A method by which atoms or molecules arrange themselves into ordered nanoscale structures by physical or chemical interactions between the units.
Parts of this book have originally appeared in the following publications:

"Donald Maclurcan has drawn on the skills and knowledge of a range of disciplines to consider the complex question of the impacts of nanotechnology. He has assembled an impressive body of evidence to show that nanotechnology as presently developed offers little hope for a more equitable world. This is a very significant conclusion, as we are often urged to believe that new technology can help the development aspirations of poor countries. The subject is important, the writing is clear and the case is compelling."
- Prof. Ian Lowe
President, Australian Conservation Foundation

"Written in direct and simple language, this book is relevant not only for academia but also for civil society groups and the broader public."
- Prof. Noela Invernizzi
Federal University of Parana, Brazil

"Dr Maclurcan makes a significant contribution towards filling the void in the contemporary understanding of the social justice dimensions related to research, development and commercialisation of nanotechnology, especially for the global South. Through the presentation of rich and detailed empirical data, and grounded in theories of development and technological change, Maclurcan provides valuable insights into the relationships between new technologies and hopes for a more equitable world."
- Dr Kristen Lyons
Griffith University, Australia

This book is the world’s first comprehensive assessment of nanotechnology’s foreseen implications for global development and provides important groundwork for subsequent research. The book places nanotechnology’s emergence within a broad historical and contemporary global context, while developing and testing an interpretive framework through which to assess nanotechnology’s claims. It establishes great clarity about the nature of global engagement with nanotechnology research and development, revealing surprising scenarios, unacknowledged by most mainstream commentators. The book concludes by exploring a range of perspectives from Thailand and Australia about nanotechnology’s foreseen implications for global inequity, thereby providing important ground for reflection.

Dr Donald Maclurcan is an Honorary Research Fellow with the Institute for Nanoscale Technology at the University of Technology, Sydney, Distinguished Fellow with the U.K.-based Schumacher Institute for Sustainable Systems, and Co-Founder of the Post Growth Institute, an international organisation inspiring and equipping others to explore paths to global prosperity that do not rely on economic growth. He holds a PhD in social science from the University of Technology, Sydney, and is widely published, with his work on nanotechnology having been translated into more than 20 languages. He is co-editor of the book Nanotechnology and Global Sustainability (CRC Press, 2011) and a Fellow of the Royal Society of the Arts.