BIOMECHATRONICS in Medicine and Health Care

RAYMOND TONG
Preface

Being multidisciplinary involving subjects such as electronics, mechanics, medicine and health care, this book provides a fundamental concept as well as a comprehensive discussion on the field of Biomechatronics. The book is the result of several years of research work by many groups on the development and application of biomechatronics on human subjects. Basic information is provided in the beginning of each chapter to facilitate clinicians, engineers and students to have background knowledge and then appreciate the application of the technical as well as clinical aspect at the latter part of the chapter. There is a growing need for biomechatronic device in medical field hence more research groups are developing different systems in this area. The new development can support the medical profession to have better health care.

The aim of the book is to present the insights of experts on emerging technology and development that are or will be applied in medical professions on a variety of clinical challenges and then demonstrate how to apply biomechatronic in providing better care and service. It also incorporates new and exciting multidisciplinary areas of research across the medical field and engineering field, such as robotic therapeutic training system for stroke rehabilitation, exoskeletons for daily activities on persons with disability, Functional Electrical Stimulation (FES) and Wireless Active Capsule Endoscopy. Each chapter provides substantial background materials relevant to the particular subject. This can be a primary reference for students and researchers in the field of Biomechatronics.

The book is enriched by the contribution of outstanding scientists and experts worldwide in different topics addressed here. This book would not have been possible without help and contributions from them and I wish to express my gratitude to all of them for their efforts.

The research group from Arizona State University (USA), consisting of Sivakumar Balasubramanian and Jiping He, have contributed to Chapter 2 with new concepts for a wearable exoskeletal system for interactive therapy on upper extremity for persons after stroke.

Olivier Lambercy and his collaborators, of the ETH Zurich (Switzerland), National University of Singapore, Simon Fraser University, McGill University and Imperial College London, have contributed to Chapter 4 with the robot-assisted rehabilita-
tion of hand function after stroke with the Haptic Knob and the HandCARE. The introduction part of neurological basic knowledge of stroke and hand function after stroke provide a good background information for stroke rehabilitation.

The book also reflects Japan’s place at the forefront of robotics research. Toru Suzuki and Eiichi Saitoh from Fujita Health University, Aichi (Japan), have provided valuable contribution to Chapter 3 about a wearable exoskeletal robot WPAL using in assisting gait for paraplegia. Research group of Kunihiro Oda, Takehito Kikuchi, Shiro Isozumi and Junji Furusho, of the Osaka Electro-Communication University (Japan) and Osaka University (Japan), introduced their isokinetic exercise machine using high performance magnetorheological (MR) fluid brake and iso-contraction exercise in Chapter 11. The third group is Jorge Solis and Atsuo Takanishi from Waseda University (Japan). They have contributed to Chapter 12 with robotic-assisted technology of dental and skin surgery simulation for medical training purposes.

A very special contribution of researchers from University of Sydney (Australia), Nur Azah Hamzaid, Che Fornusek and Glen M. Davis, provided a clear introduction of functional electrical stimulation (FES) which is a kind of technology integrated in biomechatronics in Chapter 7 for FES’s application in leg exercise of stroke therapy.

I would like to thank the contributions from research groups in Taiwan and Hong Kong. Chou-Ching K. Lin, Ming-Shaung Ju, Pin-Cheng Kung, Shu-Min Chen, of the National Cheng Kung University Hospital and National Cheng Kung University (Taiwan), contributed to Chapter 9 with robots for active rehabilitation of the upper limbs on the transverse plan for stroke patients. Xiaona Wang and Max Q.-H. Meng, of the Chinese University of Hong Kong China, contributed to Chapter 13 with wireless active capsule endoscope.

There is also a contribution from the Netherlands research group, Birgit I. Molier, Gerdienke B. Prange, Thijs Krabben, Michiel J. A. Jannink, Jaap H. Buurke, Hermie J. Hermens, of the Roessingh Research and Development (the Netherlands), University of Twente and Rehabilitation Centre ‘the Roessingh’ to Chapter 10 with upper extremity rehabilitation systems and augmented feedback.

In writing this book I have received the unstinting support of my colleagues and students in the Department of Health Technology and Informatics, the Hong Kong Polytechnic University (PolyU) (Hong Kong). The build-up of a robotic system is a team work from my graduate students, research staff, colleagues in PolyU and clinical partners. I would to thank all of them, in particular Le Li, Xiaoling Hu, and Newmen S. K. Ho for their contribution in the introduction to Biomechatronics (Chapter 1), our intention-driven rehabilitation robotic system PolyJbot (Chapter 5), hand robotic system (Chapter 6) and a robotic system combined with FES
for wrist training (Chapter 8). Persons after stroke gave us a lot of constructive comments during the experimental setup and system design. I would like to express my gratitude to their support and feedback. They are the driving force and I want to do more for them.

Most of the work presented in this book has been developed as part of the product ready for clinicians to apply on persons with disability:

- Robotic upper-extremity repetitive trainer (Arizona State University, USA)
- WPAL — Wearable Power-Assisted Locomotor, (Fujita Health University, Aichi, Japan)
- HAPTIC KNOB and HandCARE — (ETH Zurich, National University of Singapore, Simon Fraser University, McGill University and Imperial College London)
- PolyJbot — an interactive robotic system using EMG (PolyU, Hong Kong)

I am very grateful for all the contributors and their strong support.

Finally, many thanks to my wife, Wai-nga Lam, and our daughter and son, Lok-ching Tong and Lok-tin Tong, for their support, encouragement, and patience. They have been my driving source.

Raymond Kai-Yu Tong
Associate Professor
The Hong Kong Polytechnic University
Hong Kong
Contents

Preface

Contents ix

1. An Introduction to Biomechatronics 1
 1.1 What is Biomechatronics? 1
 1.2 Why Study Biomechatronics? 2
 1.2.1 An Overview of the Neuromusculoskeletal System 2
 1.2.2 The Role of Biomechatronics 2
 1.2.3 What would be a Biomechatronic System Look Like? . . . 4
 1.3 Conclusions 7

2. A Wearable Exoskeletal Rehabilitation Robot for Interactive Therapy 9
 2.1 Introduction 9
 2.2 What is Robot-Assisted Rehabilitation? 10
 2.2.1 Why is it Used? 10
 2.3 Review of Rehabilitation Robots for the Upper-Extremity . .. 12
 2.4 Robotic Upper-extremity Repetitive Trainer–RUPERT 15
 2.5 Robot Controller and Therapy Modes 19
 2.5.1 RUPERT Controller Overview 19
 2.5.2 Robot Therapy Modes 21
 2.6 A Virtual Reality-Based Biofeedback Interface 23
 2.7 Clinical Study 24
 2.7.1 Preliminary Results 25
 2.8 Conclusion 26

3. Development of Gait-Assisted Robot WPAL (Wearable
 Power-Assist Locomotor) for Paraplegia 31
 3.1 Introduction 31
 3.2 Overview of Gait Reconstruction of Sci With Orthoses 31
 3.3 Introduction of Walking Ability and Prediction of Walking Ability
 of Primewalk 34
 3.4 Limitation of Orthosis and Future of Robotics 35
 3.4.1 Basic Information of WPAL 37
 3.4.2 Abilities of WPAL 39
 3.5 Advantages to Introduce Robotics to Sci Gait Reconstruction . . 40
 3.6 Conclusion 41
4. Robot-Assisted Rehabilitation of Hand Function After Stroke with the HapticKnob and the HandCARE
 4.1 Introduction ... 43
 4.2 Hand function after stroke 45
 4.3 Robot-assisted Rehabilitation of Hand Function 46
 4.3.1 The HapticKnob 47
 4.3.2 The HandCARE 48
 4.3.3 Rehabilitation Exercises and Strategies 48
 4.4 Promises of robot-assisted therapy of hand function 51
 4.4.1 Improvement in Motor Function 51
 4.4.2 Improved Force Control 52
 4.4.3 Evolution in Muscle Activity Patterns 53
 4.4.4 Improvement in Outcome Measures 55
 4.5 Conclusions .. 56

5. A Novel Continuous Intention-Driven Rehabilitation Robot and Its Training Effectiveness
 5.1 Introduction .. 61
 5.2 Rehabilitation Robotic System with Continuous Intention Driven Control 63
 5.2.1 The Robotic System 63
 5.2.2 Robot as an Evaluation System 66
 5.3 Evaluation on Training Effectiveness 68
 5.3.1 Interventions 68
 5.3.2 Training Effects 69
 5.4 Conclusions ... 73
 5.5 Future Studies .. 73
 5.6 Acknowledgement .. 73

6. Hand Rehabilitation Robot using Electromyography
 6.1 Introduction to Rehabilitation Robots 77
 6.1.1 Rehabilitation for Hand Functions 78
 6.2 Design of the Hand Rehabilitation Robot 78
 6.2.1 Task Training Wearable Hand System 79
 6.2.2 Hand Function Training and Evaluation System 79
 6.3 Experiment Procedure 81
 6.3.1 Calibration of Range of Motion 82
 6.3.2 EMG Electrode Placement 83
 6.3.3 Maximum Voluntary Contraction 83
 6.3.4 Control Strategies using Interactive EMG Signals 84
 6.3.5 Hardware and Software Interfaces 84
 6.4 Pilot Clinical Evaluation of Hand Functions of ELDERLY and Stroke Subjects 85
6.4.1 EMG Signal Analysis .. 86
6.4.2 Maximum Voluntary Force Analysis 87
6.4.3 Range of motion analysis 89
6.5 Conclusion ... 90
6.6 Acknowledgement ... 91

7. Functional Electrical Stimulation Leg Exercise: From Technology to Therapy 93
7.1 Introduction .. 93
7.2 Exercise for People with Neurological Disabilities 93
7.2.1 Spinal Cord Injury and Exercise 94
7.3 Electrical Stimulation of Muscles 94
7.3.1 Stimulation Waveforms 95
7.3.2 Pulse Frequency 95
7.3.3 Intermittent Stimulation 96
7.3.4 Electrode Types and Placements 96
7.3.5 FES Muscle Fatigue and Muscle Fibre Recruitment 97
7.4 Fes-Evoked Exercise .. 98
7.4.1 Benefits of FES-evoked Exercise 98
7.4.2 Performance Control 98
7.5 Technical Development of FES Exercise Machines . 99
7.5.1 FES Cycling .. 99
7.5.2 Motorized FES Cycle Ergometers 100
7.5.3 Isokinetic FES Cycling Exercise 100
7.5.4 Isokinetic Cadence Control 101
7.5.5 Isokinetic FES Leg Stepping Exercise 102
7.6 Conclusions ... 103

8. Combined Functional Electrical Stimulation (FES) and Robotic System Driven by User Intention for Post-Stroke Wrist Rehabilitation 109
8.1 Introduction ... 109
8.2 The Combined Fes-Robot System 110
8.3 System Performance Evaluation 114
8.4 Fes-Robot Assisted Wrist Training 118
8.5 Conclusions ... 122
8.6 Acknowledgement ... 122

9. Development of Robots for Active Rehabilitation of the upper Limbs on the Transverse Plan for Stroke Patients 125
9.1 Introduction .. 125
9.2 Our Planar Rehab Robot for Upper Limbs 128
9.3 Evaluation of Benefits for Rehabilitation with Robots 133
9.4 Future Development 135
9.5 Conclusions .. 137

10. Upper Extremity Rehabilitation Systems and Augmented Feedback 143
10.1 Introduction .. 143
10.2 Stroke .. 143
10.2.1 Definition .. 143
10.2.2 Impairments ... 144
10.2.3 Recovery .. 144
10.3 Rehabilitation Therapy 145
10.3.1 Key Elements .. 145
10.3.2 Current Therapies 146
10.4 Robotic Devices .. 147
10.4.1 Passive and Active Movement 147
10.4.2 Gravity Compensation 147
10.5 Augmented Feedback 148
10.5.1 Aspects ... 149
10.5.2 Types ... 150
10.6 Future Research ... 152
10.7 Conclusions .. 153

11. Isokinetic Exercise Machine Using High Performance MR Fluid Brake and Iso-Contraction Exercise 157
11.1 Introduction .. 157
11.2 Conventional Isokinetic Exercise & Proposed Iso-contraction Exercise 158
11.2.1 Conventional Isokinetic Exercise 158
11.2.2 Hill’s equation ... 159
11.2.3 Proposal of Iso-contraction Exercise 160
11.3 Experimental Setup .. 161
11.3.1 MR Fluid Brake ... 161
11.3.2 Muscle Strength Evaluation and Training using MR Fluid Brake 162
11.4 Isokinetic Exercise .. 164
11.4.1 Control Method ... 164
11.4.2 Experimental Method 165
11.4.3 Experimental Results 165
11.5 Iso-Contraction Exercise 167
11.5.1 Control Method ... 167
11.5.2 Experimental Method 168
11.5.3 Experimental Results 168
11.6 Conclusions .. 170

12. Robotic-Assisted Technology for Medical Training Purposes 171
12.1 Motor Control and Learning 171
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2</td>
<td>Recent Advances in Medical Training</td>
<td>174</td>
</tr>
<tr>
<td>12.3</td>
<td>Assessment of Clinical Competence as an Approach to Provide Quantitative Information</td>
<td>175</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Case of Study: Suture Training System</td>
<td>175</td>
</tr>
<tr>
<td>12.4</td>
<td>Reproduction of Task Conditions as an Approach to Provide Multimodal Feedback</td>
<td>179</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Case of Study: Airway Training System</td>
<td>180</td>
</tr>
<tr>
<td>12.5</td>
<td>Conclusions</td>
<td>184</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td>13.2</td>
<td>Major Work in Wireless Capsule Endoscope</td>
<td>189</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Products of Given Imaging</td>
<td>189</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Olympus Capsule Endoscope</td>
<td>193</td>
</tr>
<tr>
<td>13.2.3</td>
<td>Other Capsules</td>
<td>194</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Technical limitations</td>
<td>195</td>
</tr>
<tr>
<td>13.3</td>
<td>Wireless Active Capsule Endoscope</td>
<td>195</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Electrical stimulation</td>
<td>196</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Mechatronic locomotion mechanisms</td>
<td>197</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Magnetic actuation methods</td>
<td>198</td>
</tr>
<tr>
<td>13.4</td>
<td>Conclusion and Future Prospect</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>Color Inserts</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>223</td>
</tr>
</tbody>
</table>
This page intentionally left blank