ULTRAFAST LASER PROCESSING
Contents

Preface xvii

1. Overview of Ultrafast Laser Processing 1
   Koji Sugioka and Ya Cheng
   1.1 Introduction 2
   1.2 Characteristics of Ultrafast Laser Processing 3
      1.2.1 Nonthermal Process 3
      1.2.2 Suppression of Heat-Affected Zone 4
      1.2.3 Absence of Plasma Shielding 5
      1.2.4 Multiphoton Absorption 5
      1.2.5 Internal Modification 6
      1.2.6 Carrier Excitation in Dielectrics 7
      1.2.7 Spatial Resolution of Ultrafast Laser Processing 7
   1.3 Ultrafast Laser Materials Processing 9
      1.3.1 Surface Micromachining 9
      1.3.2 Surface Micro- and Nanostructuring 11
      1.3.3 Nanoablation 13
      1.3.4 Two-Photon Photopolymerization 16
      1.3.5 Internal Modification of Transparent Materials 18
      1.3.6 Biomedical Applications 21
      1.3.7 Industrial and Commercial Applications 22
   1.4 Summary and Outlook 24

2. Lasers for Ultrafast Laser–Materials Processing 37
   Mark Ramme, Andreas Vaupel, Michaël Hemmer, Jiyeon Choi, Ilya Mingareev, and Martin C. Richardson
   2.1 Introduction 38
   2.2 Fundamental Interaction Processes: Laser Dependence 40
      2.2.1 Principal Physical Mechanisms in Ultrafast Laser Processing 40
         2.2.1.1 Reduction of the damage threshold 41
2.2.1.2 Nonlinear absorption processes 42
2.2.2 Ablation Mechanisms and Surface Structuring 43
  2.2.2.1 Surface modification thresholds 43
  2.2.2.2 Material ablation 44
  2.2.2.3 Surface texturing 46
2.2.3 Bulk Material Modification below the Ablation Threshold 46
2.2.4 Heat-Accumulation Effects in Laser Processing 48

2.3 Principal Application Areas and Their Dependence on Laser Parameters 49
  2.3.1 Micromachining Based on Ablation 49
  2.3.2 Surface Structuring 50
  2.3.3 Back-Side Structuring 51
  2.3.4 Laser Surface Cleaning 51
  2.3.5 3D Structuring and Microfluidics 52
    2.3.5.1 Fusion welding of glass 52
    2.3.5.2 Selective laser etching and microfluidics 54
  2.3.6 3D Laser Lithography Based on Two-Photon Polymerization 56
  2.3.7 Structures in Refractive Index Modification 57
  2.3.8 Other Applications 59

2.4 Ultrashort Pulse Lasers: Scientific and Commercial 60
  2.4.1 Recent Developments on Ultrashort Pulse Generation 60
    2.4.1.1 Laser of the early days of material processing (70s and early 80s) 61
    2.4.1.2 Broadening the spectrum... and the horizons (late 80s) 61
    2.4.1.3 Energy scaling, pulse shortening, wavelength scaling (mid-80s to today) 62
2.4.2 Techniques for Generation of Ultra Short Pulses at High Average Power

2.4.2.1 Laser oscillators
2.4.2.2 Mode-locking techniques
2.4.2.3 Master oscillator power amplifier
2.4.2.4 Chirped pulse amplification
2.4.2.5 Merging technologies: the gateway to high-repetition-rate, few-cycle high-energy pulses

2.4.3 Current High-Average Power, Ultrashort Laser Technology

2.4.3.1 Fiber amplifier system
2.4.3.2 Ti:Sapphire-based CPA systems
2.4.3.3 Solid-state, rod-type systems
2.4.3.4 Slab systems
2.4.3.5 Thin-disk systems
2.4.3.6 Cryogenically cooled, ultrashort laser system

2.4.4 OPA, OPCPA, and the Next Generation of Mid-IR Lasers

2.4.4.1 Optical parametric amplification (OPA)
2.4.4.2 Optical parametric chirped-pulse amplification (OPCPA)

2.5 Irradiation Optics, Online Monitoring, and Diagnostics

2.5.1 Laser Power and Processing Speed
2.5.2 Irradiation Optics and Regimes
2.5.3 Processing Stations
2.5.4 Online Imaging, Diagnostics, and Feedback

2.6 Future Prospects

2.6.1 Laser Development: The Split between Shorter Pulses and Industrial Deployment
2.6.2 Future Advances in Processing Stations
3. **Fundamentals of Ultrafast Laser Processing**

*Nadezhda M. Bulgakova*

3.1 Introduction 100

3.2 Material Excitations by Ultrashort Laser Pulses 104

3.2.1 Two-Temperature Model as a Building Block for Studies of Laser–Matter Interaction at Ultrashort Irradiation Regimes 105

3.2.2 Metals: Insights from the Two-Temperature Modeling 108

3.2.3 Laser-Induced Processes in Semiconductors 113

3.2.4 Photoexcitation and Relaxation of Transparent Dielectrics Irradiated by Ultrashort Laser Pulses 117

3.3 Studies of Laser Ablation Mechanisms in Ultrashort Irradiation Regimes 122

3.3.1 Molecular Dynamic Studies: Spallation and Phase Explosion 124

3.3.2 Hydrodynamic Modeling 131

3.3.3 Coulomb Explosion of Dielectric Surfaces 136

3.4 Volume Modifications of Transparent Materials 142

3.4.1 Propagation of Focused Laser Beams through Nonlinear Absorbing Media 143

3.4.2 Heat Accumulation Effects 149

3.4.3 Plastic Deformations 152

3.4.4 Volume Nanogratings 154

3.5 Influence of Ambient Gas on Ultrashort Laser Processing of Surfaces 156

3.6 Conclusions 159

4. **Spatial and Temporal Manipulation of Ultrafast Laser Pulses for Micro- and Nano-Processing**

*Yoshio Hayasaki and Satoshi Hasegawa*

4.1 Introduction 184
4.2 Fundamentals of Ultrafast Pulse Control 185
   4.2.1 Mathematical Description of Ultrafast Laser Pulse 185
   4.2.2 Analogy between Control of Time- and Space-Varying Signals 186
   4.2.3 Analogy between Control in Temporal Frequency Domain and Spatial Frequency Domain 188
   4.2.4 Linear Filtering 188
   4.2.5 Temporal Pulse Manipulation with Linear Filtering (Pulse Shaping) 189
   4.2.6 Spatial Pulse Manipulation with Linear Filtering (Computer Generated Hologram) 190
   4.2.7 Frequency Filter Optimization 191

4.3 Temporal Pulse Shaping 192
   4.3.1 Double Pulse Method 193
   4.3.2 Material Processing Using Temporally Shaped Pulses Formed by a Pulse Shaper 194
   4.3.3 Adaptive Control Based on Temporal Pulse Shaping 195
      4.3.3.1 Minimization of pulse duration 195
      4.3.3.2 Optimization of material’s response 196

4.4 Spatial Pulse Shaping for Parallel Material Processing 197
   4.4.1 Requirements of Spatial Pulse Shaping and Its Advantages 198
      4.4.1.1 Parallel pulses and deformed pulse 198
      4.4.1.2 Pulse energy and duration 198
      4.4.1.3 High throughput 199
      4.4.1.4 High energy-use efficiency 199
      4.4.1.5 High uniformity 200
      4.4.1.6 Variable pattern processing 200
      4.4.1.7 Instantaneous processing 201
   4.4.2 Passive Optical Components for Spatial Pulse Shaping 201
4.4.2.1 Apertures (optical masks) 201
4.4.2.2 Beam splitters 202
4.4.2.3 Lens arrays 202
4.4.2.4 Diffractive optical elements 202
4.4.3 Active Optical Components for Spatial Pulse Shaping: Spatial Light Modulators 204
4.4.3.1 Liquid crystal spatial light modulators 204
4.4.3.2 Deformable mirrors 205
4.4.4 Optical Setups 206
4.4.4.1 Image plane 207
4.4.4.2 Fourier plane 207
4.4.4.3 Fresnel plane 210
4.4.5 Adaptive Optimization of CGH in Laser Processing System 211
4.5 Spatiotemporal Pulse Manipulation 212
4.5.1 Spatiotemporal Dispersion Control 212
4.5.2 Spatiotemporal Focusing 212
4.5.3 Diffractive Spatiotemporal Focusing 212
4.5.4 Spatiotemporal Pulse Shaping 212
4.6 Conclusions and Future Perspectives 213

5. Surface Patterning, Drilling, and Cutting 225

Andreas Ostendorf and Benjamin Schöps

5.1 Introduction 226
5.2 Surface Patterning 227
5.2.1 Motivation 227
5.2.2 Characteristics of Thin Film Ablation 228
5.2.3 Patterning with High Repetition Rate Lasers 230
5.2.4 Beam Focusing and Forming 232
5.2.5 Applications 234
5.2.5.1 Thin-film solar modules 234
5.2.5.2 Self-assembled monolayers 237
5.2.5.3 Nanotexturing, microbumps, microjets 239
5.2.5.4 Black silicon 241
5.2.5.5 Wettability properties 242
5.3 Bulk Micromachining 244
## 5.3.1 Motivation

5.3.2 Characteristics of Bulk Machining

5.3.3 Differences in the Absorption between Metals and Dielectrics

5.3.4 Plasma Influence, Self-Focusing, Filamentation

5.3.5 Applications

5.3.5.1 Drilling

5.3.5.2 Cutting

5.4 Conclusion and Future Perspectives

## 6. Ultrafast Laser-Assisted Surface Micro- and Nanostructuring

*Emmanuel Stratakis, Ekaterina V. Barmina, Panagiotis A. Loukakos, Georgy A. Shafeev, and Costas Fotakis*

6.1 Introduction

6.2 Fabrication of Surface Micro/Nanostructures by Ultrafast Laser Processing in Gas Media

6.2.1 Laser-Induced Periodic Surface Structures

6.2.1.1 Characteristics of LIPSS formation

6.2.1.2 Proposed mechanisms for LIPSS formation

6.2.1.3 Applications of femtosecond laser nanostructured surfaces

6.2.2 Formation of Micro and Micro/Nano Conical Structures

6.2.2.1 Characteristics of micro/nanostructures formation

6.2.2.2 Proposed mechanisms for micro/nano cones formation

6.2.2.3 Applications of micro/nanostructured surfaces

6.3 Fabrication of Surface Micro/Nanostructures by Ultrafast Laser Processing in Liquid Media

6.3.1 Morphology of NS under Laser Ablation of Planar Surfaces

6.3.2 Growth of NS on Pre-Patterned Surfaces
6.3.3 Optical Properties of Metallic NS 328
6.3.4 NS on Non-Metallic Surfaces 337
6.3.5 Applications of NS 340
6.4 Summary and Future Perspectives 345

7. Nanoablation Using Nanospheres and Nanotips 353
   Mitsuhiro Terakawa and Minoru Obara
   7.1 Introduction 354
   7.2 Nanoablation Using Nanosphere 355
      7.2.1 Plasmon Polaritons and Mie Scattering Near Field 356
      7.2.2 Nanoablation Using Metallic Nanosphere 357
      7.2.3 Nanoablation Using Dielectric Nanosphere 367
   7.3 Nanoablation Using Nanotip 379
   7.4 Nanolens or Nanoheater? 383
   7.5 Conclusions and Future Perspectives 387

8. Ultrafast-Laser-Induced Phenomena in Transparent Materials 393
   Kiyotaka Miura, Kazuyuki Hirao, Yasuhiko Shimotsuma, and Masaaki Sakakura
   8.1 Introduction 394
   8.2 Characteristics of Ultrafast Laser Processing 394
      8.2.1 Shock Wave Propagation 395
      8.2.2 Thermal Diffusion 400
   8.3 Various Types of Laser-Induced Phenomena 402
      8.3.1 Photo-Induced Refractive Index Change 403
      8.3.2 Valence State Change 408
      8.3.3 Formation of Elemental Distribution 412
      8.3.4 Precipitation and Growth of Silicon 415
   8.4 Final Remarks 421

9. 3D Photonic Device Fabrication 427
   Nicola Bellini, Andrea Crespi, Shane M. Eaton, and Roberto Osellame
   9.1 Introduction 427
   9.2 Waveguide Writing in Transparent Materials 428
9.2.1 Exposure Parameters and Considerations

- 9.2.1.1 Pulse energy and translation speed 429
- 9.2.1.2 Low vs. high repetition rate 430
- 9.2.1.3 Longitudinal vs. transverse writing 431

9.2.2 Different Materials 432

- 9.2.2.1 Glasses 432
- 9.2.2.2 Crystals 433

9.3 Photonic Devices 436

- 9.3.1 Passive Devices 436
  - 9.3.1.1 Power routing devices 436
  - 9.3.1.2 Discrete waveguide arrays 447
  - 9.3.1.3 Waveguide Bragg grating devices 453

- 9.3.2 Active Devices 457
  - 9.3.2.1 Waveguide amplifiers 457
  - 9.3.2.2 Waveguide lasers 461

- 9.3.3 Fibre-Based Devices 467

- 9.3.4 Integrated 3D Devices 469
  - 9.3.4.1 Optofluidic devices 470
  - 9.3.4.2 Optomechanical devices 471
  - 9.3.4.3 Integrated circuits for quantum information experiments 472

9.4 Conclusions and Future Outlook 475

10. Fabrication of Microfluidic Chips and Integrated Optofluidic Devices in Glass by Femtosecond Laser Direct Writing 489

Ya Cheng and Koji Sugioka

10.1 Introduction 489

10.2 Fabrication of Microfluidic Structures in Glass 491

- 10.2.1 Femtosecond-Laser-Assisted Wet Chemical Etching 491

- 10.2.2 Liquid-Assisted Femtosecond Laser 3D Drilling 499

10.3 Fabrication of Micro-Optical Components and Optofluidic Integration in Glass 502
10.3.1 Free-Space Micro-Optical Components 502
10.3.2 Integrated Optofluidic Systems 504

10.4 Applications of Microfluidic and Integrated Optofluidic Chips in Biomedical Research 506
10.4.1 Dynamic Observation of Living Cells Using Nanoaquariums 506
10.4.2 Optical Sensing with Integrated Optofluidic Chips 510

10.5 Conclusions 510

11. Fabrication of 3D Functional Microdevices by Two-Photon Photopolymerization 519

Dong Wu, Xiao-Feng Lin, Qi-Dai Chen, Hong Xia, Yong-Lai Zhang, and Hong-Bo Sun

11.1 Introduction 520
11.2 Femtosecond Laser Micronanofabrication Based on Two-Photon Photopolymerization 521
11.2.1 Chemical Processes 521
11.2.2 The Spatial Resolution 523
11.2.3 Surface Roughness 527
11.2.4 Materials Functionalization 531

11.3 Micro-Optical Components Macros 535
11.3.1 Planar Optical Devices 535
11.3.2 Three-Dimensional Complex Photonic Structures 539

11.4 Functional Micromachines 544
11.4.1 Light-Driven Microdevices 544
11.4.2 Magnetic-Driven Micromachines 548

11.5 Other Applications 551
11.5.1 Functional Microfluidic Components 551
11.5.2 Biological Applications 554

11.6 Outlook 558
11.6.1 Novel 3D Optical Devices and Integrated Optical Circuits 558
11.6.2 Microfluidic Devices with Functional 3D Components for Biological Application 558
11.6.3 Electrical-Optical Complex Micromechanical Systems 559

11.7 Conclusions 559
## 12. Ultrafast Laser Processing: From Micro- to Nanoscale Industrial Applications

*Friedrich Dausinger and Steffen Sommer*

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>570</td>
</tr>
<tr>
<td>12.2 Structuring of Surfaces</td>
<td>572</td>
</tr>
<tr>
<td>12.2.1 Tribological Patterns</td>
<td>572</td>
</tr>
<tr>
<td>12.2.2 Embossing and Moulding Tools</td>
<td>574</td>
</tr>
<tr>
<td>12.2.3 Printing and Embossing Rolls</td>
<td>575</td>
</tr>
<tr>
<td>12.2.4 Functionalization of Opto-Electronics</td>
<td>576</td>
</tr>
<tr>
<td>12.3 High-Precision Drilling</td>
<td>578</td>
</tr>
<tr>
<td>12.4 Separation</td>
<td>580</td>
</tr>
<tr>
<td>12.4.1 Dielectrics</td>
<td>580</td>
</tr>
<tr>
<td>12.4.2 Semiconductors</td>
<td>581</td>
</tr>
<tr>
<td>12.4.3 Medical Devices</td>
<td>582</td>
</tr>
<tr>
<td>12.5 Outlook</td>
<td>584</td>
</tr>
</tbody>
</table>

*Index* 587
Preface

The rapid development of ultrafast lasers (i.e., picosecond and femtosecond lasers) over the past few decades has opened up new avenues for materials processing that exploit the many advantages that such lasers have over conventional pulsed lasers (i.e., nanosecond lasers). The extremely short pulses of ultrafast lasers reduce the size of the heat-affected zone (HAZ) in processed regions, resulting in high-quality microfabrication of both soft materials and hard or brittle materials. The negligible HAZ can also give nanoscale spatial resolutions in fabrication. Another important advantage of ultrafast lasers is that they can generate extremely high peak powers. Focusing the laser beam produces sufficiently high peak intensities to induce efficient multiphoton absorption, even in transparent materials such as glass. This permits surface microstructuring and micromachining of transparent materials. Furthermore, by shifting the position of a tightly focused laser beam with a moderate pulse energy in a transparent material, multiphoton absorption can be confined to a region near the focus position, allowing internal modification and microfabrication of transparent materials. Ultrafast lasers have become common tools for micro- and nanoprocessing, and they are currently widely used in both fundamental research and practical applications. In fact, ultrafast lasers were used in over 60% of the studies presented at the 11th International Symposium on Laser Precision Microfabrication (LPM 2011, June 7–10, 2011, Takamatsu, Japan), one of the biggest and most important international conferences in the field of laser micro- and nanoprocessing.

Despite the rapid growth in this field, there are only a limited number of books that review ultrafast laser processing. We, thus, decided to edit a book that covers a broad range from fundamentals to scientific and industrial applications to provide comprehensive information on ultrafast laser processing. This book consists of 12 chapters that cover relevant topics in ultrafast laser processing, which have been reviewed by internationally recognized experts in the field. It includes an overview of ultrafast laser processing (Chapter 1), ultrafast laser systems and optics for materials processing (Chapter 2), fundamental mechanisms in the interaction of ultrafast
laser beams with matter (Chapter 3), beam-shaping techniques for micro- and nanoprocessing (Chapter 4), surface patterning, drilling, cutting, micro- and nanostructuring, and nanoablation (Chapters 5–7), ultrafast laser-induced phenomena in transparent materials and internal modification (Chapter 8), applications of internal modification and microfabrication for fabricating three-dimensional (3D) photonic devices and biochips (Chapters 9 and 10), two-photon photopolymerization and 3D lithography and their applications (Chapter 11), and industrial applications (Chapter 12). Each chapter clearly presents the background, state-of-the-art techniques, and future prospects of the topic.

We believe that this book provides a realistic and comprehensive review of ultrafast laser processing and will be beneficial for students and young scientists who either are considering to work or have just started working in this area, as well as for researchers and engineers who are already working in this field.

Finally yet importantly, we would like to thank all the chapter authors for their great effort and wonderful work in writing informative chapters.

Koji Sugioka
Ya Cheng
May 2013