PULMONARY NANOMEDICINE
DIAGNOSTICS, IMAGING, AND THERAPEUTICS
EDITED BY NEERAJ VIJ
PULMONARY NANO MEDICINE
DIAGNOSTICS, IMAGING, AND THERAPEUTICS

EDITED BY
NEERAJ VIJ

Pan Stanford Publishing
To the fond memory of my parents,
who taught me to seek enlightenment and knowledge
and strive for excellence.

Dearest souls,
although you have departed and moved far away,
your perpetual memory in our hearts
makes us feel that you are ever near us, with us.

— N.V.
Contents

Contributors xv
Preface xxi
Acknowledgments xxiii

1. Theranostic Applications of Nanotechnology in Chronic Obstructive Lung Diseases 1
 Neeraj Vij and Aakruti Gorde
 1.1 Pulmonary Physiology and Pathogenesis of Chronic Obstructive Lung Diseases 1
 1.2 Application of Nano-Based Systems in Treating Chronic Obstructive Lung Diseases 3
 1.2.1 Therapeutic and Diagnostic Challenges in Chronic Obstructive Lung Diseases 6
 1.2.2 Nanosystems to Overcome Challenges in Chronic Obstructive Lung Diseases 6
 1.3 Nanotheranostics 7
 1.3.1 Theranostic Nanoparticles for Chronic Obstructive Lung Diseases 8
 1.3.2 Perspective 9

2. Multifunctional Tumor-Targeted Nanoparticles for Lung Cancer 15
 Shinji Kuroda, Tomohisa Yokoyama, Justina O. Tam, Ailing W. Scott, Li Leo Ma, Manish Shanker, Jiankang Jin, Corbin Goerlich, David Willcutts, Jack A. Roth, Konstantin Sokolov, Keith P. Johnston, and Rajagopal Ramesha
 2.1 Introduction 16
 2.2 Biomarkers for Tumor Targeting 18
 2.3 Nanotechnology in Medicine 20
 2.3.1 Development of Nanoparticles for Lung Cancer and Other Medical Applications 20
 2.3.2 Classes of Nanoparticles 23
 2.3.3 Delivery Methods of Nanoparticles to Targeted Regions 26
2.3.3.1 Systemic Administration 26
2.3.3.2 Local Administration via Inhalation 27
2.3.3.3 Toxicity of Nanoparticles 28

2.4 EGFR-Targeted Hybrid Plasmonic Magnetic Multifunctional Nanoparticles 29
2.4.1 Structure of Nanoparticles 29
2.4.2 Therapeutic Function of EGFR-Targeted Nanoparticles 30
 2.4.2.1 Inhibition of EGFR signaling pathway 30
 2.4.2.2 Induction of DNA damage 32
2.4.3 Diagnostic Function of EGFR-Targeted Nanoparticles 33

2.5 Conclusions 34

3. Nasal and Pulmonary Delivery of Macromolecules to Treat Respiratory and Nonrespiratory Diseases 45

Durga Paturi, Mitesh Patel, Ranjana Mitra, and Ashim K. Mitra

3.1 Introduction 45
3.2 Nasal Drug Delivery 46
 3.2.1 Nasal Anatomy 47
 3.2.2 Mechanisms of Nasal Absorption 48
 3.2.3 Factors Affecting Nasal Absorption 50
 3.2.3.1 Physiological factors 50
 3.2.3.2 Pathological conditions 50
 3.2.3.3 Biochemical changes 52
 3.2.3.4 Physicochemical properties of the permeant 52
 3.2.3.5 Properties of the formulation 53
 3.2.3.6 Drug distribution 54
 3.2.4 Strategies to Enhance Nasal Absorption 55
 3.2.4.1 Cyclodextrins 56
 3.2.4.2 Fusidic acid derivatives 56
 3.2.4.3 Phospholipids 56
 3.2.4.4 Bile salt derivatives 56
 3.2.4.5 Peptidase and protease inhibitors 57
 3.2.5 Nasal Formulations 57
4.2.1 Quantum Dots 105
4.2.2 Rare Earth-Doped Nanophosphors 105
4.2.3 Dye-Doped Silica/ORMOSIL Nanoparticles 106
4.2.4 Gold Nanoparticles 106
4.2.5 Iron Oxide Nanoparticles 107
4.2.6 Carbon Nanotubes 107

4.3 In vitro Diagnosis, Techniques, and Challenges 108
4.3.1 Flow Cytometry 108
4.3.2 Multiplexed Microarray ELISA 110
4.3.3 Molecular Beacon Technology 110
4.3.4 Plasmonic Biosensing 111
4.3.5 Magnetic Biosensing 112
4.3.6 Electrochemical Biosensing 112

4.4 In vivo Diagnosis, Challenges, and Techniques 112
4.4.1 Optical Imaging, Including Confocal Endomicroscopy 113
4.4.2 Magnetic Resonance Imaging 114
4.4.3 Radiographic Imaging 115
4.4.4 Multimodal Imaging 115

4.5 Specific Examples of Lung Disorders 116
4.5.1 ALI/ARDS 117
4.5.2 Pneumocystis Pneumonia 118
4.5.3 Cystic Fibrosis 118
4.5.4 Tuberculosis 119
4.5.5 Lung Cancer 121

4.6 Toxicological Studies Using Nanoparticles 122

4.7 Conclusions 123

5. Nanoparticles for Targeting T Cells in Allergy and Inflammatory Airway Conditions 135

Adham Bear, Laura B. Carpin, Conrad R. Cruz, Rebekah A. Drezek, and Aaron E. Foster

5.1 Introduction 135
5.2 Role of T Cells in the Pathogenesis of Asthma 136
5.3 Treatment Strategies for Asthma 139
5.3.1 Nanosteroids for the Treatment of Asthma 139
5.3.2 Nanocarrier Vaccines as Immune Modulators to Promote T_{H1} Responses 142

5.4 Potential T Cell-Targeted Strategies for Nanoparticle-Based Therapies 144

5.5 T Cell-Targeting Ligands 148
 5.5.1 Large Targeting Ligands 148
 5.5.1.1 Antibody conjugates to target T cell surface molecules 148
 5.5.1.2 TCR-targeted strategies 151
 5.5.2 Small Targeting Ligands 152
 5.5.2.1 Aptamers 152
 5.5.2.2 Peptides 153

5.6 Alternative Approaches 154
 5.6.1 Chemokine Receptor-Targeted Strategies 154

5.7 Summary 155

 Shyam S. Mohapatra, Subhra Mohapatra, Gary Hellermann, and Rhonda R. Wilbur

6.1 Introduction 167
 6.1.1 What Are Chitosan Nanoparticles? 169

6.2 Therapeutic Effects and Safety of Chitosan in Human Disease 171
 6.2.1 Chitosan as Gene Therapy 175
 6.2.2 Toxicity and Safety of Chitosan Gene Therapy 177

6.3 Safety and Efficacy Studies in Dogs 178

6.4 Safety of Chitosan-Gene Nanocomplexes in Nonhuman Primates 181

6.5 Respiratory Disease Applications 182
 6.5.1 Examples of Chitosan Nanoparticle Applications to Treat Allergic Disease 183
 6.5.1.1 Food allergy and anaphylaxis 183
 6.5.1.2 Experimental asthma 183
 6.5.1.3 RSV infection 184
 6.5.2 Nano-Immunotherapy for Allergies 185

6.6 Future of Immunotherapy 186

6.7 Concluding Remarks 187
7. Targeted Delivery to the Pulmonary Endothelium

Yifei Zhang, Jiang Li, Xiang Gao, and Song Li

7.1 Introduction

7.2 Pulmonary Endothelium as a Target for Drug Delivery

7.2.1 Physiological Functions of Lung ECs

7.2.2 Pulmonary Endothelium as a Drug Delivery Target

7.2.2.1 Passive targeting

7.2.2.2 Active targeting via surface antigens

7.2.3 Physiological Barriers for Intravenous Drug Delivery to the Pulmonary Endothelium

7.2.3.1 In vivo barriers

7.2.3.2 Cellular barriers

7.3 Targeting the Pulmonary Endothelium for Imaging and Therapeutic Applications

7.3.1 Imaging Applications

7.3.2 Therapeutic Applications

7.3.2.1 Targeted delivery of protein therapeutics

7.3.2.2 Targeted gene delivery to the pulmonary endothelium

7.4 Conclusion

8. Nanosystems for Selective Epithelial Barrier Targeting in Chronic Airway Diseases

Heather A. Parsons, Rachel L. Damico, and Venkataramana K. Sidhaye

8.1 Introduction

8.2 Obstructive Lung Diseases

8.2.1 Airway Inflammation in COPD

8.2.2 Airway Inflammation in Asthma

8.2.3 Role of the Airway Epithelial Barrier

8.2.3.1 Epithelial barrier in asthma

8.2.3.2 Epithelial barrier in COPD

8.3 NP Delivery of Airway Diseases
9. Potential Respiratory Health Risks of Engineered Carbon Nanotubes

James C. Bonner, Jeffrey W. Card, Stavros Garantziotis, and Darryl C. Zeldin

9.1 Introduction
9.2 Immune Cell Interaction with CNTs
9.3 Fibrogenic Reactions to CNTs
9.4 CNTs and Preexisting Allergic Asthma
9.5 CNTs and LPS-Induced Airway Inflammation
9.6 Effects of CNTs on Other Organ Systems
9.7 DNA Damage and Aneuploidy Caused by CNTs
9.8 Pleural Toxicity of CNTs
9.9 Conclusions
Contributors

James C. Bonner received his PhD in physiology from Mississippi State University in 1987, completed his postdoctoral training at the National Institute of Environmental Health Sciences (NIEHS) in 1990, and served as a principal investigator at NIEHS and at the Hamner Institutes for Health Sciences. He joined the Department of Environmental and Molecular Toxicology at NC State University as an associate professor in 2007.

Dr. Bonner has over 20 years of experience in respiratory toxicology and lung disease pathogenesis. He has published more than 80 peer-reviewed research articles on environmental lung disease, numerous review articles, and several textbook chapters on respiratory toxicology.

He is the lead author of Chapter 9, on the potential respiratory health risks of engineered carbon nanotubes.

Aaron E. Foster received his BA in biology from the University of Puget Sound in Tacoma, Washington, in 1994 and his PhD in chemical engineering from the University of Sydney, Australia, in 2003. Currently, he is an assistant professor at the Center for Cell and Gene Therapy at Baylor College of Medicine.

Dr. Foster’s research interests include cancer vaccine development, immune modulation, and gene therapy applications using cytotoxic T lymphocytes (CTLs) as anti-tumor effector cells or as carriers for in vivo delivery. In collaboration with Dr. Rebekah Drezek in the Department of Bioengineering at Rice University, he is also studying the development and use of multifunctional nanoparticles for the treatment of cancer and infectious disease.

Dr. Foster is the main author of Chapter 5, on the use of nanoparticles to treat airway inflammation.
Song Li received his MD in 1985 and PhD in tumor immunotherapy in 1991 from the Fourth Military Medical University, China. He worked with Dr. Leaf Huang at the University of Pittsburgh School of Medicine as a post-doc for two years and then as a research faculty for another four years. Dr. Li joined the faculty of the School of Pharmacy at the University of Pittsburgh in June 2000 and is currently an associate professor of pharmaceutical sciences. His major research interest is focused on the development of lipid- and polymer-based nanodelivery systems for targeted delivery of various types of therapeutics including nucleic acids (genes, siRNA, and peptide nucleic acids), proteins, and small molecules (e.g., anticancer agents and antioxidants).

Dr. Li is the main author of Chapter 7, on targeted delivery to the pulmonary endothelium.

Ashim K. Mitra received his PhD in pharmaceutical chemistry in 1983 from University of Kansas. He joined the University of Missouri–Kansas City in 1994 as chairman of Pharmaceutical Sciences. He is also vice provost for Interdisciplinary Research, Curators’ Professor of Pharmacy, and director for Translational Research at University of Missouri–Kansas City, School of Medicine. Dr. Mitra has over 25 years of experience in ocular drug delivery and disposition and has authored or co-authored over 250 refereed articles and 30 book chapters in this field. He holds 8 patents and has made well over 450 presentations, including abstracts, at national and international scientific meetings. This work has attracted over 6 million dollars in funding from government agencies such as the National Institutes of Health (NIH) and Department of Defense (DOD) and from pharmaceutical companies.

Dr. Mitra is also a recipient of several research awards from AAPS, AACP, and various pharmaceutical organizations and serves on numerous editorial boards. According to Biomed Experts (during the past 10 years), he co-authored the third-highest number of publications in the world in the area of “Prodrugs.” In April 2010, he was ranked fifth in the world among AAPS’s Top Ten Researchers. In February 2012, his article “Ocular Drug Delivery” was again ranked as one of the top 5 downloaded articles in the *AAPS Journal*. Currently, he is chairman of the USP Council of Experts, General Chapter
Dr. Mitra is the senior author of Chapter 3, which discusses the use of nasal and pulmonary delivery of macromolecules to treat respiratory and nonrespiratory diseases.

Shyam S. Mohapatra is a Distinguished USF Health Professor and director of the Division of Translational Medicine, Nanomedicine Research Center at the Morsani College of Medicine, University of South Florida. He also directs the Signature Program in Allergy, Immunology and Infectious Diseases at the college. A PhD graduate of the Australian National University, Prof. Mohapatra is a recipient of two international awards: the Alexander von Humboldt research fellowship (1984, Bonn, Germany) in genetics and Pharmacia Allergy Research Foundation Award (1992, Paris) for his contributions to the field of allergy and immunology.

Prof. Mohapatra’s research program focuses on the molecular mechanisms underlying inflammation in respiratory diseases, cancers, viral infections, and traumatic brain injury. He has used nanotechnology approaches to advance translational research in these disease areas.

Prof. Mohapatra is the senior author of Chapter 6, which discusses the application of multifunctional chitosan nanocarriers in respiratory gene therapy.

Rajagopal Ramesh received his PhD in molecular biology in 1994 from the All India Institute of Medical Sciences, New Delhi, India. He completed his postdoctoral fellowships at Tulane University School of Medicine, New Orleans, in 1998 and later joined the faculty at M. D. Anderson Cancer Center in Houston, USA. Currently, Dr. Ramesh is a professor in the Department of Pathology and director of Experimental Therapeutics and Translational Cancer Medicine at the University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. He holds the Jim and Christy Everest Endowed Chair in Cancer Developmental Therapeutics and the title of the Oklahoma TSET Cancer Research Scholar.
Dr. Ramesh’s research is focused on investigating new cancer therapies with an emphasis on lung cancer. His laboratory has been conducting applied translational cancer research in leading areas such as cancer gene therapy, nanotechnology, and molecular targeted therapy. Research in his laboratory has led to four clinical trials for the treatment of cancer. He has published more than 86 articles in leading scientific journals and 17 textbook chapters on cancer therapy and drug development. His research is funded by the National Cancer Institute and other national granting agencies.

Dr. Ramesh is the senior author of Chapter 2, which discusses the use of multifunctional tumor-targeted nanoparticles for lung cancer.

Indrajit Roy received his MSc and PhD degrees from the University of Delhi, India, in 1997 and 2002, respectively. Following that, he completed postdoctoral research at the State University of New York (SUNY) at Buffalo, as well as at the Johns Hopkins School of Medicine. His research interests include the use of various nanoparticles for applications in targeted drug delivery, nonviral gene delivery, photodynamic therapy (PDT), and multimodal diagnostic imaging.

Dr. Roy has published more than 50 articles in leading scientific journals and holds 3 U.S. patents. In 2005, he was presented with the Visionary Innovator Award by the technology transfer office at SUNY, Buffalo. From 2005 to 2009, he served as a research assistant professor in the Institute for Lasers, Photonics and Biophotonics (ILPB) at SUNY, Buffalo. At present, he is an associate professor of chemistry at the University of Delhi.

Prof. Roy is the author of Chapter 4, on in vitro and in vivo diagnosis of pulmonary disorders using nanotechnology.

Venkataramana K. Sidhaye received her bachelor’s in biomedical engineering in 1995 and her MD in 1998 at Northwestern University. She then did her residency in internal medicine and was a chief resident at Northwestern before coming to Johns Hopkins in 2002 for fellowship training in pulmonary and critical care medicine. She joined the Hopkins Pulmonary faculty in 2006. Dr. Sidhaye’s research interest in is epithelial barrier function,
with a focus on the airway epithelium. She is interested in the cross-talk between the epithelial barrier and cell–cell contacts and the role of the epithelium in innate immunity, and this is modified by luminal exposures. More recently, she has been interested in epithelial responses to inspired nanomaterials.

Dr. Sidhaye is the senior and corresponding author of Chapter 8, on epithelial barrier targeting in chronic airway diseases.

Neeraj Vij received his PhD in biotechnology from the Indian Institute of Technology in 2001 and was also a recipient of international fellowship at the Institute of Genetics, Biological Research Center (Centre of Excellence of the European Union), Hungary, in same year. He subsequently completed his postdoctoral research at the University of Heidelberg, Germany, and The Johns Hopkins University School of Medicine (JHU SOM). Dr. Vij is currently an assistant professor at the Department of Pediatric Respiratory Sciences and Institute of NanoBiotechnology, JHU SOM. He serves on the editorial boards of several nanomedicine journals, including *Journal of Nanomedicine & Nanotechnology, Expert Opinion in Drug Delivery, International Journal of Nano Studies & Technologies*, and so forth. He has been invited to help organize several nanotechnology conferences and seminars, such as NanoBiotech 2009, and the nanotechnology postgraduate course at American Thoracic Society (ATS). He is also frequently invited to serve as a reviewer for various nanomedicine journals and grant review study sections, including NIH, USA. He is a life member of the American Society for Nano Medicine (ASNM) and several other international scientific societies. Dr. Vij has received several research awards and recognition for his scientific contributions.

The primary research focus of Dr. Vij’s laboratory is identification of molecular pathways leading to chronic disease pathophysiology, with an aim to identify novel therapeutic sites. His laboratory is interested in applied and pre-clinical translational research and concentrates on the identification of novel therapeutic strategies including design and development of nano-based delivery systems for theranostic applications in chronic obstructive lung diseases.

Dr. Vij is the editor of this book and senior author of Chapter 1, which discusses the theranostic applications of nanotechnology in chronic obstructive lung diseases.
Preface

Nanotechnology has revolutionized medicine over the past decade. The unique physicochemical characteristics of engineered nanoparticles (ENPs) enable novel therapeutic and diagnostic (theranostic) applications, particularly in pulmonary diseases. The research over the past decade has provided insights into biological properties and application of NPs in pulmonary medicine.

This book provides a comprehensive review on the pulmonary applications of NPs and aims to enlighten the readers about novel nano-based theranostic strategies for treating pulmonary disorders. Each chapter discusses strategies to overcome the technological and disease-specific pathophysiological barriers to develop novel nano-based diagnostics, imaging, and therapeutic tools for treatment of various airway diseases.

In summary, the book is focused on emerging cutting-edge applications of nanotechnology in pulmonary medicine and aims to synchronize the efforts of pulmonary biologists, nano-chemists, and clinicians to develop novel nano-based theranostic systems for treatment of airway diseases.

This book has been compiled with the goal to serve both academic institutions and industry for education, training, and research. It is written to educate graduate and postgraduate students on emerging theranostic applications of ENPs in treating various pulmonary diseases. It will also serve as a guide for both clinicians and researchers in developing novel theranostics while closely monitoring the health effects of next-generation ENPs.

Overall, this is a wikipidea of pulmonary nanomedicine that discusses the scope of both current and future nanotechnologies for pulmonary applications.

Neeraj Vij, MS, PhD
Baltimore, MD
April 2012
Acknowledgments

I express my sincere thanks to all authors and reviewers, who are experts in their respective fields, for their exceptional contribution and support. This book came into its present form with the earnest efforts of all authors, who helped me ensure that therapeutic and diagnostic strategies of novel pulmonary nanomedicine were discussed to help lead the advancement of the emerging scientific field of pulmonary nanomedicine. I am extremely grateful to Stanford Chong (Director) and Sarabjeet Garcha (Editorial Manager), of Pan Stanford Publishing Pte. Ltd., for their outstanding support and perceptiveness. Sarabjeet was especially instrumental in providing the much-needed editorial support for the swift collation of the book.

Neeraj Vij