CARBON NANOMATERIALS for GAS ADSORPTION
Contents

Preface xiii

1. Techniques for the Measurement of Gas Adsorption by Carbon Nanostructures 1

D. P. Broom

1.1 Introduction 2

1.2 Gas Sorption Measurement Techniques 4

1.2.1 Gravimetric Techniques 4

1.2.2 Volumetric Techniques 5

1.2.3 Temperature-Programmed Desorption 8

1.3 Experimental Methodology 10

1.3.1 Sample Degassing or Activation 10

1.3.2 Thermal Equilibration 11

1.3.3 Gas Dosing 11

1.3.4 Gas Removal 12

1.3.5 Signal Calibration 13

1.4 Excess and Absolute Adsorption 14

1.5 Potential Error Sources 15

1.5.1 Calibration 15

1.5.2 Temperature Measurement and Control 16

1.5.3 Pressure Measurement 17

1.5.4 Sample Size Considerations 18

1.5.5 Sample Purity 19

1.5.6 Sample Density and Volume 20

1.5.7 Gas Purity 23

1.5.8 Sample Degassing 24

1.5.9 Gas Compressibility 25

1.5.10 Buoyancy Effect Corrections 26

1.5.11 Dead Volume Corrections 28
2. Physical and Chemical Interactions of Hydrogen with Carbonaceous Nanostructures (An Analytical Study—Indirect Experiment) 39

Yury S. Nechaev

2.1 Introduction 39

2.2 Part I—Nature and Characteristics of Hydrogen Interactions with Carbonaceous Nanomaterials 45

2.2.1 Open Questions Concerning the Nature, Mechanisms, and Characteristics of Hydrogen Sorption by Carbon Nanostructures 45

2.2.2 Hydrogen Chemisorption in Graphite and Gelated Carbon Nanostructures 46

2.2.2.1 Methodological Aspects 46

2.2.2.2 Dissociative Chemisorption of Hydrogen 47

2.2.2.3 Dissociative–Associative Chemisorption of Hydrogen: A New Concept 55

2.2.2.4 Characteristics and Some Manifestations of Chemisorptions Processes I–IV 61

2.2.3 Some Aspects of Determining Sorption Characteristics from the Temperature-Programmed Desorption Spectra: Identifying the Nature of Sorption 64

2.2.4 Use of Novel Approaches in the Sorption Data Analysis 70

2.2.4.1 Method for Determining the Fraction of Surface Carbon Atoms and Active Sorption Centers in Single-Wall Nanotubes: Sorption Monolayer Model 70

2.2.4.2 Manifestation of Multilayer Physical Adsorption Initiated by Monolayer Chemisorption in the Single-Wall Nanotubes 86
2.2.4.3 Physical Adsorption and Chemisorption in Single-Wall Nanotubes and GNFs Saturated with Hydrogen at 9 GPA 97

2.2.4.4 Polylayer Physical Adsorption in GNFs Initiated by Monolayer Chemisorption 106

2.2.5 Conclusion 111

2.3 Part II—On Some Experimental Proofs of the Hydrogen Multilayer Intercalation with Carbonaceous Nanostructures: The Importance of Supersdsorbent Development for Fuel-Cell-Powered Vehicles 116

2.3.1 Introduction 116

2.3.2 On the Specific Intercalation of Atomic Hydrogen into Graphene Layers 116

2.3.3 On the Hydrogen Intercalation vs. Chemisorption Mechanisms: Spillover Enhancement of the Sorption Capacity of Carbonaceous Nanomaterials with Metals-Catalyst Nanoparticles 125

2.3.4 On the Hydrogen Intercalation (Multilayer Physical Adsorption) in GNFs and SWNT Bundles Initiated by Monolayer Chemisorptions 127

2.3.5 Conclusion 128

3. Hydrogen Storage in Carbon Aerogels 131

H. Y. Tian, C. E. Buckley, M. Paskevicius, and D. A. Sheppard

3.1 Introduction 132

3.2 Fundamentals of Adsorption and Characterizations 133

3.2.1 Fundamentals of Absorption 133

3.2.1.1 The Enthalpy of Adsorption 134

3.2.1.2 Isosteric Enthalpy of Adsorption 135

3.2.2 Characterizations Techniques 135

3.3 Carbon Aerogels 137

3.3.1 Synthesis and Characterization of CAs 137

3.3.2 Syntheses and Characterization of Catalyzed CAs 143

3.3.2.1 CAs Catalyzed by Acetic Acid 143

3.3.2.2 CAs Catalyzed by Potassium Hydrate 148

3.4 Metal-Doped Carbon Aerogels 151

3.5 Conclusions and Outlook 155
4. Gas Adsorption by Fullerenes and Polyhedral Multi-Walled Carbon Nanostructures

V. M. Kiselev, I. M. Belousova, V. P. Belousov, and E. N. Sosnov

4.1 Introduction 161
4.2 Experimental Results 167
4.3 Discussion 172
4.4 Conclusions 178

5. Structural and Electronic Properties of Hydrogenated Graphene

Tanglaw Roman and Hideaki Kasai

5.1 Introduction 187
5.2 The H Atom and Graphene 188
5.3 Hydrogen Molecule Dissociative Adsorption 191
5.4 Hydrogen Clustering on Graphene 193
5.5 Effects of Adsorbed Hydrogen on the Electronic States of Graphene 201
5.6 Graphene Two-Face Hydrogenation and Saturation 211
5.7 Summary and Concluding Remarks 214

6. Gas Desorption from Detonation Nanodiamonds During Temperature-Programmed Pyrolysis

A. P. Koscheev

6.1 Introduction 219
6.2 A Short Survey of Applications of Thermal Desorption Mass Spectrometry to the Study of the Surface of Diamond Materials 221
6.3 Results of the Studies of Detonation Nanodiamonds of Different Types 223
6.3.1 Objects and Methods 223
6.3.2 Structure, Chemical Composition and Thermal Stability of Various UDD 223
6.3.3 FTIR Spectroscopy of UDD of Different Types 225
6.3.4 Main Features of Thermal Desorption of Gases from UDD 228
6.3.5 Influence of Additional Acid Treatment on the Surface Chemistry of Nanodiamonds of Different Types 231
6.3.6 Surface Properties of Nanodiamonds Extracted from Detonation Carbon Soot of Different Types 233
6.3.7 Modification of Nanodiamond Surface by Thermal Oxidation 236
6.3.8 TDMS of Gases Released from UDD under High Temperature Pyrolysis: Implication to the Meteoritic Nanodiamonds 238

6.4 Conclusion 244

7. Modeling Gas Adsorption on Carbon Nanotubes 253

Amanda S. Barnard

7.1 Introduction 254
7.2 Computational Modeling 258
7.2.1 Adsorption and Rehybridization on Surfaces 261
7.2.2 Adsorption and Rehybridization on Carbon Nanotubes 265
7.3 Multiscale Model 270
7.3.1 CNT Cohesive Energy 271
7.3.2 Energy of Adsorbates 271
7.3.3 Rehybridization Energy 272
7.3.4 Curvature Dependent Strain Energy 272
7.3.5 Thermodynamic Expansion 273
7.4 Parameterization 274
7.4.1 Gas Coverage and Patterning 277
7.5 Modeling Carbon Nanotubes in Air 281
7.5.1 Atmospheric Gases 282
7.5.2 Humid Air 283
7.6 Conclusion 285

G. Zollo and F. Gala

8.1 Introduction 292
8.2 Nanostructured Carbon Allotropes 293
8.3 Theoretical Methods 294
8.3.1 Density Functional Theory Based \textit{ab initio} Calculations 295
8.3.2 Hartree–Fock Based Quantum Chemistry
\textit{ab initio} Techniques \hspace{1cm} 297

8.3.3 Monte Carlo Sampling Techniques in the Grand Canonical Ensemble \hspace{1cm} 299

8.4 Gas Physical Adsorption in Carbon Nanostructures \hspace{1cm} 299

8.4.1 Hydrogen Physical Adsorption in Carbon Nanostructures \hspace{1cm} 300
 8.4.1.1 CNTs \hspace{1cm} 300
 8.4.1.2 Activated and Microporous Carbons \hspace{1cm} 304
 8.4.1.3 Other Carbonaceous Structures \hspace{1cm} 305

8.4.2 Gas Physical Adsorption in Carbon Nanostructures \hspace{1cm} 308
 8.4.2.1 Methane Physical Adsorption in Carbon Nanostructures \hspace{1cm} 309
 8.4.2.2 Physical Adsorption of Other Gaseous Species in Carbon Nanostructures \hspace{1cm} 310

8.5 Gas Chemisorption in Carbonaceous Nanostructures \hspace{1cm} 313

8.5.1 Hydrogen Chemisorption in Carbonaceous Nanostructures \hspace{1cm} 313
 8.5.1.1 Graphene \hspace{1cm} 314
 8.5.1.2 Fullerenes \hspace{1cm} 314
 8.5.1.3 Carbon Nanotubes \hspace{1cm} 316

8.5.2 Gas Chemisorption in Carbon Nanostructures for Sensing \hspace{1cm} 317
 8.5.2.1 Graphene-Based Nanostructures \hspace{1cm} 317
 8.5.2.2 CNTs \hspace{1cm} 319

8.6 Conclusions \hspace{1cm} 324

9. \textbf{Carbon Nanotubes for Gas Sensing Applications: Principles and Transducers} \hspace{1cm} 333

\textit{Michele Penza}

9.1 Introduction \hspace{1cm} 333

9.2 Properties of Carbon Nanotubes \hspace{1cm} 337

9.3 Fabrication of Carbon Nanotubes \hspace{1cm} 351
 9.3.1 Arc Discharge \hspace{1cm} 354
 9.3.2 Laser Ablation \hspace{1cm} 355
 9.3.3 Chemical Vapor Deposition \hspace{1cm} 356
9.3.4 Other Methods of CNTs Synthesis 359
9.4 Gas Sensors Based on Carbon Nanotubes 360
 9.4.1 Pristine Carbon Nanotubes 362
 9.4.2 Modified CNTs 369
 9.4.3 Purified CNTs 376
 9.4.4 Functionalized CNTs 381
9.5 Transducers Using Carbon Nanotubes 393
 9.5.1 Chemiresistors 394
 9.5.2 FETs 402
 9.5.3 Electrochemical Sensors 407
 9.5.4 SAW and Piezoelectric Devices 410
 9.5.5 Other Transducers 422
9.6 Comparative Analysis of CNT Gas Sensors 427
9.7 Challenges and Future Perspectives 436
9.8 Conclusion 442
9.9 Acknowledgment 444

Index 469
The increasing interest in new technological solutions for gas storage, requiring the development of novel solid state media, led to the benchmarking of nanostructured carbon allotropes as one of the ongoing strategic research areas in science and technology.

The variety of carbon bonding arrangements is at the root of the complexity and diversity of structures and configurations exhibited by new carbon nanomaterials.

In the last few years there was an upsurge of papers and heated discussions about these undoubtedly fascinating few-dimensional entities that are expected to play a fundamental role in providing new routes for gas adsorption and storage.

This book was conceptualized to provide, on the one hand, an up-to-date look at ongoing experimental and theoretical activities in the rapidly progressing and evolving field of carbon science and technology and, on the other, a thorough critical investigation to clear the prevalent misunderstandings and errors. Its purpose is to contribute toward paving the way for current and future development of gas interactions with carbon nanomaterials.

Chapter 1 discusses major technological issues for the quantitative determination of gas sorption in carbon nanomaterials. The current techniques used to investigate the sorption properties of nanostructured and nanoporous carbons are described, with an emphasis on both experimental methodologies and potential sources of error in sorption measurements. This chapter raises some general methodological questions that deserve careful consideration by researchers working in the field of gas storage, especially those involved in R&D activities for hydrogen storage.

Chapter 2 reviews the past and present situation of hydrogen adsorption by carbonaceous nanostructures. The nature of hydrogen interaction with carbonaceous nanomaterials is thoroughly investigated, and the various mechanisms playing a role in H adsorption processes are critically discussed. The adsorbent materials taken into account in this chapter encompass the whole range of carbon nanostructures, from fullerenes to nanotubes, and
their uptake properties are reconsidered using novel approaches to interpret the literature data published up to now. This contribution offers a stimulating glimpse of future directions in the field of hydrogen storage for fuel-cell-powdered vehicular applications.

Chapter 3 deals with the hydrogen storage properties of a specific class of carbon nanomaterials, the carbon aerogels. Preparation methodologies and structural characterizations of various carbon aerogels are discussed with reference to the sorption properties of these materials, which are regarded as the most promising candidates for hydrogen storage at cryogenic temperatures.

Chapter 4 describes the sorption properties of fullerenes, astralene, and nano-size activated carbons with respect to oxygen, hydrogen, and nitrogen. Astralene is a new nanomaterial, and it is characterized by a polyhedral multilayer fulleroid-type structure that manifests properties interesting also for some unthought-of applications. These fullerene-like structures are indeed proposed not only as adsorbent materials but also as photosensitizers for singlet oxygen generation realized during photodesorption from irradiated surfaces or carbon nanoshells. Possible applications are foreseen in the fields of laser technology (fabrication of a fullerene-oxygen-iodine laser) and medicine (treatments of biological solutions).

Chapter 5 reviews the adsorption properties of hydrogen on graphene. The effects of H adsorption on the electronic states of graphene are described and discussed in the frame of a theoretical modelling. This approach takes into account H-molecule dissociative adsorption on edge defects of graphene and the subsequent systems involving chemisorbed hydrogen states on graphene surfaces.

Chapter 6 reports the experiments performed on a variety of gaseous species in connection with a novel exciting class of sp3-coordinated carbon structures, namely the ultradispersed detonation diamond (UDD), characterized by crystal sizes in the range of 3–6 nm. The main features of gas desorption from such materials are analyzed and discussed along with some technological aspects related to their surface chemistry. A very important issue is the use of UDD systems as synthetic analogues of meteoritic nanodiamonds in simulated cosmochemical experiments.

In Chapter 7 a general analytical model for describing the thermodynamic stability of carbon nanotubes in the presence of gas adsorbates is presented. The fundamental model parameters are of simple thermodynamic quantities such as cohesive energies,
adsorption energies, and strain energies. The model, parameterized for the cases of exohedral adsorption of H, O, N, and H$_2$O, allows for the description of different types of adsorption configurations and densities and includes the re-hybridization of C atoms in the vicinity of adsorption sites. Using this model, the stability of nanotubes in air is examined as a function of the relative humidity.

Chapter 8 delves into some of the most popular theoretical approaches pertaining to atomic simulations and related techniques of gas adsorption. It shows how \textit{ab initio} total energy calculations are essential in case of impurities, doping, chemisorption, and sensoring due to the inherent complexity of the samples and processes involved.

Last but not least, Chapter 9 reviews the fundamental properties of carbon nanotubes that govern their electronic structure and chemical reactivity, in terms of their effects on gas adsorption and sensing. Remarkable space is given to the structure, the chemical state and the post-synthesis treatments of the nanotubes to be used as sensing material with high sensitivity and chemical selectivity. The major technological issues for the fabrication of efficient gas sensors are analysed and discussed together with the challenges that must be addressed for integration of these carbon nanomaterials into efficient, robust and miniaturised sensors.

We thank the leaders of the groups who collaborated with us on the preparation of this book for their patience, advice, and help. We are also grateful to all their co-authors and other collaborators for taking part in these relevant research activities.

\textbf{Maria Terranova}
\textbf{Silvia Orlanducci}
\textbf{Marco Rossi}
April 2012