The nanotechnology industry is a fast-growing industry with many unique characteristics. When bringing the results of nanotechnology research to the market, companies and universities run into unforeseen problems related to intellectual property rights and other legal and regulatory issues. An effective commercialization of the results of research requires basic knowledge of the relevant issues and a well-defined strategy, while the absence of such knowledge and strategy can be detrimental to the commercial potential of any invention. Even the most impressive scientific achievements can become a commercial failure because of a lack of understanding and strategy relating to the legal and regulatory issues surrounding the commercialization of a technology. This book discusses the most relevant issues that a company or university will face when bringing a nanotechnology invention to the market. A large part of the book is dedicated to the acquisition, strategic use, valuation, and licensing of patents. Further chapters deal with venture capital, university-industry collaboration, environment health and safety, and public perception.

In this way managers and scientists at universities and companies are provided with a handbook that provides them with industry-specific basic knowledge of issues that they are unfamiliar with but that is essential to the commercial success of their inventions.

Wim Helwegen holds a Master of Laws degree in International and European law from Tilburg University in the Netherlands. He is specialized in the interaction of patent law and advanced technologies such as nanotechnology and biotechnology. After having worked at a Court of Appeals in the Netherlands, Wim conducted postgraduate research at the Queen Mary Intellectual Property Research Institute at Queen Mary University of London. In 2007, he was appointed as a researcher at the IPA University Center in Helsinki. Currently, Wim is preparing a doctoral dissertation on the patenting of nanotechnology at the University of Helsinki. In addition, he is a lecturer in patent law at Hanken School of Economics.

Luca Escoffier graduated in law from the University of Pavia, Italy, in 2001. He earned a Master of Laws in IP in 2003 (IBIT-University of Turin), interned at WIPO and worked as an IP counsel for a nanobasics company in Italy until 2009. He then moved to Seattle to work at the University of Washington as a visiting scholar and then as a visiting lecturer. Luca was one of the four experts selected in 2009 as Fellows at the Institute of Intellectual Property in Tokyo. He was one of the 45 students from Singularity University (in 2010) chosen from a pool of 1600 applicants to spend 10 weeks at the campus of NASA Ames in Mountain View. He is a Fellow of the Stanford-Vicenza Transatlantic Technology Forum, and from May 2010 the founder and CEO of Iusque Ad Sidera LLC. Luca is about to submit his PhD dissertation about nanotechnology patenting and valuation.
NANOTECHNOLOGY COMMERCIALIZATION FOR MANAGERS AND SCIENTISTS
NANOTECHNOLOGY COMMERCIALIZATION FOR MANAGERS AND SCIENTISTS

edited by WIM HELWEGEN LUCAESCOFFIER
Contents

Contributors xvii
Foreword xxv
Preface xxvii

1 Introduction to the World of Nanotechnology 1
Rachel M. Buchanan, Christine A. Smid, and Ennio Tasciotti
1.1 History and Definition 1
1.2 Fabrication and Characterization 2
 1.2.1 Top-Down Nanofabrication: Photolithography and Nanolithography 3
 1.2.2 Bottom-Up Nanofabrication 3
 1.2.3 Electron Microscopes 4
 1.2.4 Scanning Probe Microscopes 4
1.3 Current and Future Applications 5
 1.3.1 Diagnostics 5
 1.3.2 Nanoparticles and Implantable Devices for Targeted Delivery 8
 1.3.3 Tissue Engineering and Medical Implants 12
 1.3.4 Electronics 13
 1.3.5 Microelectromechanical Systems 14
 1.3.6 Sensors 15
 1.3.7 Energy 17
 1.3.8 Food Production, Processing, Preservation, and Packaging 19
 1.3.9 Water Purification 19
 1.3.10 Air Quality 23
 1.3.11 Space 24

2 Overview of Intellectual Property Rights 33
Wim Helwegen and Luca Escoffier
2.1 Patents 33
2.1 Requirements
 2.1.1 Patentable subject matter
 2.1.2 Novelty
 2.1.3 Industrial application/utility
 2.1.4 Inventive step/non-obviousness
 2.1.5 Disclosure
2.1.2 Post Grant
2.1.3 Exempted Uses
2.2 Other Forms of Intellectual Property
 2.2.1 Utility Models
 2.2.2 Copyright
 2.2.2.1 Economic rights, moral rights, and other features
 2.2.3 Trademarks
 2.2.3.1 Requirements and characteristics
 2.2.4 Industrial Designs
2.3 Trade Secrets

3 Nanotechnology Patent Procurement and Litigation in Europe
 Hanna R. Laurén
3.1 Obtaining Patent Protection in Europe
 3.1.1 National Route
 3.1.2 European Route
 3.1.3 International Route
3.2 Post-Grant Proceedings for a European Patent
3.3 Patentability of Nanotechnology in Europe
 3.3.1 Patentable Inventions
 3.3.2 Novelty
 3.3.2.1 Selection inventions
 3.3.2.2 Size-related properties
 3.3.2.3 Naturally occurring products
 3.3.2.4 Case law of the boards of appeal
 3.3.3 Inventive Step
 3.3.3.1 Argumentation
 3.3.3.2 Obviousness of miniaturization
 3.3.3.3 Case law of the boards of appeal
 3.3.4 Industrial Applicability

Contents
3.4 Drafting a European Patent Application 66
 3.4.1 General Considerations 66
 3.4.2 Sufficient Disclosure of the Invention 68
 3.4.3 Claims 69
 3.4.4 Terminology 71

4 Nanotechnology Patent Procurement and Litigation in the United States 75
 Sarah M. Rouse
 4.1 Patent Procurement for Nanotechnology-Based Inventions: US Perspective 75
 4.2 The US Patent System 75
 4.2.1 Patent Prosecution Overview 76
 4.2.1.1 Patent application submission and examination 76
 4.2.2 Types of Patent Applications 78
 4.2.2.1 Non-provisional patent application 78
 4.2.2.2 Provisional patent application 78
 4.2.2.3 Continuation application 78
 4.2.2.4 Continuation-in-part application 79
 4.2.2.5 Divisional application 79
 4.2.3 Pursuing a US Patent via the Patent Cooperation Treaty (PCT) 80
 4.2.4 Patent Term 80
 4.2.5 Conditions for Obtaining a US Patent 81
 4.2.5.1 Novelty 81
 4.2.5.2 Utility 82
 4.2.5.3 Non-obviousness 83
 4.2.5.4 Written description and enablement 84
 4.2.5.5 Best mode 85
 4.3 US Patent Post-Grant Proceedings 86
 4.3.1 Interference 86
 4.3.2 Reissue 87
 4.3.2.1 Broadening reissue 88
 4.3.2.2 Narrowing reissue 88
 4.3.2.3 Doctrine of intervening rights 88
 4.3.3 Reexamination 89
 4.3.3.1 Ex parte reexamination 89
 4.3.3.2 Inter partes reexamination 90
 Contents

4.3.4 Statutory and Terminal Disclaimers 90
4.3.5 Certificate of Correction 91
4.4 US Patent Reform 91
4.4.1 First-Inventor-to-File 91
4.4.2 Post-Grant Review 92
4.4.3 Inter Partes Review 93
4.4.4 Patent Trial and Appeal Board 94
4.4.5 Prior User Rights Defense 94
4.4.6 False Patent Marking Suits 94
4.4.7 Elimination of Best Mode Invalidity Defense 95
4.5 Patentability of Nanotechnology in the United States 95
4.5.1 Strategic Prosecution of Nanotechnology Inventions 95
4.5.2 US Nanotechnology "Patent Thicket" 96
4.5.3 Nanotechnology Commercialization 97
4.5.4 Alternative Mechanisms for Commercialization of Nanoproducts 97
4.5.5 US Patent Infringement and Litigation 98

5 How to Set Up an Effective IP Strategy and Manage a Nanotechnology-Based Patent Portfolio 103
Pekka Valkonen
5.1 Strategy: Why It’s Ambiguous 103
5.2 Pros and Cons of Patents 105
5.3 IPR Strategies in the Literature 106
5.4 Appropriability of Patents 111
5.5 Appropriability of Patents in Nanotechnology 113
5.6 IPR Policy: Implementing Strategy from the Bottom Up 116
5.7 IPR Policy: Some Practical Measures 120
5.7.1 Implementing IPR Policy by Learning 120
5.7.2 Patenting in View of Porter’s Five Forces 121
5.7.3 Evaluation of Patent Portfolio 123
5.8 Summary 124

6 How to Identify Patent Infringements in the Nanotechnology Sector 131
Marco Spadaro
6.1 Introduction 131
6.2 The Laws 132
6.3 The United States of America and Europe 134
6.4 Exclusive Rights and Infringement 135
6.5 The Product and the Claims 136
6.6 Recognizing Infringement 137
6.7 Infringing Nanotechnology 139
6.8 Determining Infringement in Nanotechnology 149
 6.8.1 How to State to the Alleged Infringer 149
 6.8.2 How to Explain It to the Experts and the Judges 150
 6.8.3 What the Law Tells Us 150
6.9 Am I (Patent Owner) an Infringer? 150
6.10 Different Kinds of Infringement 152
6.11 Court Decision: United States of America (Kumar) 153
6.12 Court Decision: Europe (Germany) 154
6.13 Specific Problems in Nanotechnology 157
6.14 Conclusion 157

7 Licensing Issues in Nanotechnology 159
 Joanna T. Brougher
 7.1 Introduction 159
 7.2 Reasons for Entering into License Agreements 160
 7.3 Overview of Intellectual Property Licensing
 7.3.1 A License: Transferring Less than the Entire Ownership Interest 161
 7.3.2 An Assignment: Transferring the Entire Ownership Interest 162
 7.4 Best Practices When Entering into A License Agreement
 7.4.1 Non-Disclosure Agreements to Protect Confidential Information 163
 7.4.2 Due Diligence to Uncover Potential Issues 164
 7.4.3 Properly Define the Scope of the Agreement 165
 7.5 Potential Issues in Nanotechnology Licensing
 7.5.1 Protecting IP Rights Under Trade Secret Law 166
 7.5.2 Ownership and Control of the Licensed Intellectual Property
 7.5.2.1 University ownership 168
 7.5.2.2 Government march-in rights 169
 7.6 Conclusion 157
Contents

7.3 Unknown and Unforeseen Side Effects 172
7.4 Crowded Technology Space and Cross-Licensing Strategies 173
7.5 Policing and Enforcing Patent Rights 175
7.6 International Issues Surrounding Nanotechnology Licensing 177
7.6.1 Different Patent Laws for Different Countries 178
7.6.2 Export Control Laws 180
7.6.3 Choice of Law Provision to Govern the International Licensing Agreement 181
7.7 Conclusion 182

8 IP Valuation: Principles and Applications in the Nanotechnology Industry 185

Efrat Kasznik

8.1 Overview of IP Valuation 185
8.1.1 What Is Intellectual Property (IP) Valuation? 185
8.1.1.1 Brief history of IP valuation in the United States 185
8.1.1.2 IP valuation standards in the United States 188
8.1.1.3 IP valuation circumstances in Europe 194
8.2 The Application of IP Valuation in the Nanotechnology Industry 195
8.2.1 Nanotechnology IP Landscape and Technology Development 195
8.2.1.1 Patent landscape overview in the United States 195
8.2.1.2 State of nanotechnology development around the world 197
8.2.2 Managing an IP Portfolio in the Nanotechnology Industry 198
8.2.2.1 IP portfolio challenges in nanotechnology 198
8.2.2.2 Patenting along the value chain 198
8.2.2.3 Technology transfer from university to industry 199
8.2.2.4 Mitigating litigation risk 200
8.2.3 IP Valuation Case Studies
 8.2.3.1 Advanced thermoelectric technology 201
 8.2.3.2 Nanocomposite plastic technology 202

9 Investing in Nanotechnology 205
 Po Chi Wu
 9.1 The Nanotech Challenge 205
 9.2 How Investors Think About Nanotechnology 208
 9.3 Current State of Investment in Nanotechnology 215
 9.4 The Venture Biosphere 218
 9.4.1 What is the Venture Biosphere? 219
 9.4.2 What Makes the Silicon Valley Ecosystem Work So Well? 223
 9.5 Fundamentals of The Venture Capital Process: Advice to Entrepreneurs 229
 9.5.1 What Does a VC Really Look for When Reviewing a Business Plan? 229
 9.5.1.1 VC's first key issues (instant "decline to invest") – “weakest links in the story” 229
 9.5.2 Reasons for Failure 229
 9.5.2.1 Success mode 230
 9.5.3 Practical Considerations: What to Do about your Plan (Teamwork Is Required, with Leadership) 231
 9.6 How to Raise Money from Venture Capital Firms 231

10 Technology Transfer and Nanomedicine with Special Reference to Sweden 237
 Claes Post
 10.1 Introduction 237
 10.2 Technology Transfer 240
 10.2.1 Definitions 240
 10.2.2 TTO Networks and Guidelines 241
 10.2.3 Deal Sourcing 244
 10.2.4 Swedish Context 245
 10.2.4.1 Tech transfer processes: a linköping University case study 248
10.3 Nanomedicine 254
 10.3.1 Regulatory Aspects 255
10.4 Nanotech Case Studies 256
 10.4.1 Biacore 257
 10.4.2 SPAGO Imaging 258
 10.4.3 Artificial Corneas 259
10.5 Conclusion 260

11 Public-Private Partnerships — an Example from the Netherlands: The Industrial Partnership Programme 263

Pieter de Witte

11.1 Introduction 263
 11.1.1 General Introduction 263
 11.1.2 Public-Private Partnerships in Research 264
 11.1.3 Foundation FOM 265
 11.1.4 The Industrial Partnership Programme (IPP) 266
 11.1.5 The Advent of Open Innovation and the Rise of the IPP 268
 11.1.6 Summary 269
11.2 Description of the Industrial Partnership Programme 269
 11.2.1 Introduction 269
 11.2.2 Characteristics of the Programme 270
 11.2.3 Forms of IPP: Open, Closed, or FOM Group at Company Laboratory 270
 11.2.4 The Start-Up Phase of an IPP 271
 11.2.4.1 The embryonic stage of a potential new IPP 271
 11.2.4.2 Application and review procedure 272
 11.2.4.3 Success rate of IPP applications 272
 11.2.4.4 The collaboration agreement 273
 11.2.5 The Execution Phase of an IPP 274
 11.2.5.1 Organization and management 274
 11.2.5.2 Governance 275
 11.2.5.3 Financial aspects 275
 11.2.6 Summary 275
11.3 Experiences and Results 276
 11.3.1 Success Comes in Different Shapes and Sizes 276
 11.3.2 The Network 279
 11.3.3 Knowledge Transfer 281
 11.3.4 IPR 282
 11.3.5 Experiences from Industrial Partners 283
 11.3.6 Experiences from Academics 284
 11.3.7 Summary 285
11.4 Conclusions and Outlook 286
 11.4.1 Conclusions 286
 11.4.2 Outlook 288

12 University and Employees’ Inventions in Europe and the United States 291
 Niklas Bruun and Michael B. Landau
 12.1 Employee Inventions in Europe 291
 12.1.1 European Traditions for University Inventions 292
 12.1.2 A Changing Role of Universities Leading to Increased University Ownership 293
 12.1.3 Outline 294
 12.2 University Ownership as a General Rule 295
 12.2.1 Ownership Regulated by Labor Law 295
 12.2.1.1 Germany 295
 12.2.1.2 Norway 296
 12.2.2 Ownership is Regulated by Patent (or Intellectual Property) 297
 12.2.2.1 United Kingdom 297
 12.2.2.2 The Netherlands 299
 12.3 Researcher Ownership Through “Professor’s Privilege” 300
 12.3.1 Italy 300
 12.3.2 Sweden 300
 12.4 Hybrid Systems: Ownership Regulated and Balanced Through Special Legislation 301
 12.4.1 Denmark 301
 12.4.1.1 Finland 302
12.4.2 Comments 303
12.5 Discussion 303
12.5.1 Overview 303
 12.5.1.1 Inventions subject to the legislation 304
 12.5.1.2 The tension between publication and secrecy 304
 12.5.1.3 The definitions of inventions belonging to the employer 304
12.5.2 Implications for Nanotechnology 305
12.6 The US Perspective 306
 12.6.1 University Inventions in the United States 306
 12.6.1.1 Copyrights 306
 12.6.1.2 Trademarks 308
 12.6.1.3 Patents 309
12.7 University Ownership is the General Rule in the United States As Well 310
 12.7.1 Duty to Disclose and University Ownership 310
 12.7.2 Co-Inventorship 316
 12.7.3 Universities and Payment of Faculty Inventors 317
 12.7.3.1 Cornell University 317
 12.7.3.2 University of Michigan 318
 12.7.3.3 Yale University 318
 12.7.3.4 Emory University 319
12.8 Experimental use in the United States 319
 12.8.1 The Experimental use Exception: What Is Left of It 319
12.9 Government Ownership of Inventions in the United States 321
 12.9.1 The Bayh-Dole Act 321
12.10 Industry May Have a License in Certain Circumstances 323
 12.10.1 The “Shop Right” 323
12.11 Conclusion 324
12.12 Nanotechnology: Some Final Reflections 324
13 Environment, Health, and Safety Within the Nanotechnology Industry 339
Kaarle Hämeri
13.1 Introduction 339
13.2 Exposure to Nanoparticles 342
 13.2.1 Exposure Scenarios 343
 13.2.2 Exposure Metrics 344
 13.2.3 Exposure due to Release to the Environment 344
13.3 Environmental Fate 345
 13.3.1 Nanomaterials in Air 345
13.4 Health Effects and Human Toxicity 347
13.5 Risk Assessment 349
13.6 Regulatory Issues 350
 13.6.1 Future Perspective 351
13.7 Standardization Activities 352

14 Regulation of Nanomaterials in the EU 355
Bärbel R. Dorbeck-Jung
14.1 Introduction 355
14.2 Regulatory Structure and Policy 356
14.3 Overview of Hard and Soft Regulation 359
 14.3.1 Hard Regulation (Legislation) 360
 14.3.2 Soft Regulation 361
14.4 Cross-Cutting Regulatory Issues 363
 14.4.1 Definition of Nanomaterials 363
 14.4.2 New Chemicals Regulation (REACH) 365
14.5 Regulation of Nanoproducts in Specific Areas 366
 14.5.1 Nanomaterials in Medical Products 366
 14.5.2 Nanomaterials in Cosmetic Products 369
 14.5.3 Nanomaterials in Food Products 370
14.6 Conclusion 371

15 Nanomaterial Regulation in the United States 373
Michael E. Heintz
15.1 Nanomaterial Regulation in the United States 373
15.2 Federal Regulation of Nanomaterials 374
15.2.1 Environmental Regulation of Nanomaterials 377
 15.2.1.1 Nanomaterials stewardship program 379
 15.2.1.2 Carbon nanotube (CNT) regulations 380
 15.2.1.3 Significant new use rule (SNUR) 381
15.2.2 Worker Safety and Nanomaterials 382
 15.2.2.1 Nanotechnology and the occupational health and safety administration 382
 15.2.2.2 National Institute for occupational safety and health 384
15.2.3 Food and Drug Regulation of Nanomaterials 387
15.3 Insurance Concerns with Nanomaterials 389
15.4 State and Local Regulation of Nanomaterials 392
15.5 Conclusion 395

Index 405
Contributors

Joanna Brougher is a patent attorney whose practice focuses primarily on the preparation and prosecution of patent and trademark applications in the areas of biomedical devices, life sciences, and nanotechnology. She also assists clients on a variety of matters, including establishing patent prosecution strategy, guiding established companies in product life cycle management, conducting non-infringement analyses, and conducting due diligence for venture capital investment, mergers and acquisitions, and licensing agreements. Joanna is also an adjunct at the Harvard School of Public Health and a contributing editor for the Biotechnology Healthcare Journal and the FDA Update Journal. She has published numerous articles related to patent law and healthcare. Joanna has an undergraduate degree in microbiology, an MPH degree from the University of Rochester, and a law degree from Boston College Law School. She can be reached at joannabrougher@gmail.com.

Niklas Bruun is a professor of private law at the University of Helsinki and the director of the IPR University Center in Helsinki. He is a regular advisor to the Finnish government and EU institutions on issues of labor law and IP law. Furthermore, Prof. Bruun leads a graduate school in intellectual property law (INNOCENT) and is involved in IP activities at the Hanken School of Economics. Among his research interests are the relationship between academia, industry, and IP rights. He has been vice-chairman and chairman of the Finnish Copyright Council for about 20 years and is chairman of the Finnish Copyright Commission since 2008. He has also been chairman of Finnish Society for Industrial Property Law from 1998 to 2001 and is chairman of the Board of Good Business Practice of the Central Chamber of Commerce in Finland.
Contributors

Prof. Bruun holds an honorary doctorate from the University of Stockholm.

Rachel M. Buchanan is a graduate student in the Department of Biomedical Engineering at the University of Texas at Austin. She received a BS in biomedical engineering from Rensselaer Polytechnic Institute in 2009.

Bärbel Dorbeck-Jung is a professor of Regulation and Technology at the University of Twente, the Netherlands. She holds a master’s degree in German law (University of München) and is a member of the ETPN Board, the EU Round Table Nanomedicine, and the Working Group on Nanotechnologies of the Dutch Standardization Institute. Prof. Dorbeck-Jung has worked and published on topics related to governance, legislation and self-regulation, good governance, and the rule of law, computer law, health care law, and technological regulation (IT and nanotechnologies). Currently she conducts empirical and theoretical studies on medical technology and nanotechnology regulation. She extensively lectures at international conferences and seminars on these issues. Prof. Dorbeck-Jung is one of the project leaders of the Dutch NanoNext Theme Risk & Technology Assessment.

Luca Escoffier graduated in law from the University of Parma, Italy, in 2001. He earned a Master of Laws in IP in 2003 (WIPO/University of Turin), interned at WIPO, and worked as an IP counsel for a nanobiotech company in Italy until 2008. He then moved to Seattle to work at the University of Washington as a visiting scholar and then as a visiting lecturer. Luca was one of the four experts selected in 2009 as Fellows at the Institute of Intellectual Property in Tokyo. He was one of the 80 students from Singularity University (in 2010) chosen from a pool of 1600 applicants to spend 10 weeks at the campus of NASA Ames in Mountain View. He is a Fellow of the Stanford-Vienna Transatlantic Technology Forum, and from May 2010 the founder and CEO of Usque Ad Sidera LLC. Luca is about to submit his PhD dissertation about nanotechnology patenting and valuation.
Kaarle Hämeri holds a professorship in Aerosol Physics at the University of Helsinki. He is an expert in studies on aerosols with focus on ultrafine and nanoparticles. He has published about 100 articles in peer-reviewed international journals and more than 250 other papers and reports. His research topics range from synthetic nanoparticles and indoor aerosols to urban air quality, aerosol measurement techniques, and aerosol-climate interaction. Prof. Hämeri has a significant role within the scientific community and holds several confidential posts in international organizations and committees. He is currently president of the International Aerosol Research Assembly and an editor of two international journals, *Atmospheric Research* and *Atmospheric Chemistry and Physics*. Prof. Hämeri has worked as an expert in various institutions and presented numerous papers in scientific conferences.

Michael Heintz specializes in environmental law, energy issues, and emerging technologies. He has frequently presented and published on issues related to nanotechnology regulation and global climate change issues. He received his BS in natural resources and environmental sciences from Purdue University, and his law degree and MS in environmental sciences from Indiana University. He currently works for the Maryland Energy Administration in Annapolis.

Wim Helwegen holds a Master of Laws degree in international and European law from Tilburg University in the Netherlands. He is specialized in the interaction of patent law and advanced technologies, such as nanotechnology and biotechnology. After having worked at a Court of Appeals in the Netherlands, Wim conducted postgraduate research at the Queen Mary Intellectual Property Research Institute at Queen Mary University of London. In 2007, he was appointed as a researcher at the IPR University Center in Helsinki. Currently, Wim is preparing a doctoral dissertation on the patenting of nanotechnology at the University of Helsinki. In addition, he is a lecturer in patent law at Hanken School of Economics.

Efrat Kasznik is a valuation expert with over 15 years of economic consulting experience. She holds an MBA from UC Berkeley and
Contributors

a BA in accounting and economics from the Hebrew University, Jerusalem and is the founder and president of Foresight Valuation Group, a Silicon Valley–based consulting firm providing IP valuation, litigation, and strategy services. Kasznik specializes in performing business valuations and valuations of intellectual property for a range of purposes, including mergers and acquisitions, financial reporting, technology commercialization, transfer pricing, and litigation damages. Prior to founding Foresight, she held a series of partner-level positions with leading litigation and IP consulting organizations. She has also been involved as a CFO, co-founder, and adviser to several Silicon Valley start-ups in the telecommunications, media, and cleantech fields.

Michael B. Landau is professor of law at the Georgia State University College of Law in Atlanta, Georgia. His law degree is from the University of Pennsylvania, where he won the Nathan Burkan Memorial Copyright Award. In 2005–2006 he was a Fulbright Scholar at the IPR University Center at the University of Helsinki. Prior to entering academia, Prof. Landau practiced law with the New York firms of Cravath, Swaine & Moore and Skadden, Arps, Meagher, Slate & Flom, where he represented entertainment, technology, and media clients. He has presented papers or has been an invited guest lecturer at numerous law schools in the United States and Europe, including Georgetown, NYU, Vanderbilt, Emory, Tulane, the London School of Economics, Cambridge, University of Edinburgh, University of Durham, and the Amsterdam Institute for Information Law. Before entering the legal profession, Prof. Landau was a professional musician.

Hanna R. Laurén received a Master of Science degree from the University of Turku in 2002, majoring in chemistry and minoring in biochemistry, physics, and mathematics. After graduation she worked for five years as a researcher at the University of Turku, focusing on the functionalization and solubilization of single-wall carbon nanotubes and their layer-by-layer self-assembly into polyelectrolyte multilayers with conducting polymers. Since 2007, Hanna has been working as a patent agent at the Helsinki-based
patent agency Oy Jalo Ant-Wuorinen Ab, where she specializes in chemistry, chemical instrumentation, and nanotechnology.

Claes Post works at the Technology Transfer Office at Linköping University. He received his MPharm from Uppsala University and his PhD (Pharm) from Linköping University. A professor of neuropharmacology at Linköping University, Sweden, he is focusing on developing commercially viable projects from the medical faculty at the university. Dr. Post has had almost a 20-year-long career in the pharmaceutical industry as head of preclinical research at Astra Pain Control in Södertälje, Sweden, as well as at Astra Draco in Lund, Sweden. For 4 years he was also head of preclinical and clinical CNS at Pharmacia in Milan, Italy. During the last more than 10 years, Dr. Post has worked with VC-funded start-up companies in Sweden and Denmark apart from being a partner at VC funds in Sweden and Denmark. He has published more than 120 peer-reviewed scientific papers. Academically, he has been adjunct professor of neuropharmacology at Uppsala University, as well as at Lund University and Karolinska Institute.

Sarah Rouse is a registered patent attorney at Katten Muchin Rosenman LLP focused on identifying, securing, and maximizing the value of clients’ intellectual property. Dr. Rouse is co-inventor on patents directed to nanomedicine. Her research led to the formation of Keystone Nano, a company providing platform technologies for nano-enabled therapeutics, and NanoSpecialties LLC, a company creating nano-based products for industrial markets. Dr. Rouse received dual undergraduate degrees from the South Dakota School of Mines and Technology and her PhD in materials science and engineering from the Pennsylvania State University. Her doctoral research focused on the synthesis, dispersion, and characterization of nanocomposite particles for bioimaging, drug delivery, and gene therapy. While at PSU, Dr. Rouse was named a National Science Foundation Fellow. She received her JD and certificate in intellectual property from DePaul University College of Law. She also interned at the World Intellectual Property Organization (WIPO) Coordination Office at the United Nations.
Contributors

Christine A. Smid is a graduate student in the Department of Biomedical Engineering at the University of Texas at Austin, from where she received a BS in 2008.

Marco Spadaro has a degree in pharmaceutical chemistry and technologies. Marco has been involved in IP practice since 1990, both in private law firms and as head of the Corporate Patent Department of a primary Italian pharma company. He was a founding partner of Studio Associato Leone & Spadaro in 2006, and from 2010 a partner of Cantaluppi & Partners. Marco is an expert in drafting and prosecuting patents in chemistry, particularly pharmaceutica, biotech, nanopharma, food, polymers, and composite materials; patent strategies and patent portfolio management; and opposition and litigation proceedings. In addition, he is a lecturer in IP at the Patent Academy of the European Patent Office and at several universities and industries. He is also a tutor at the Centre d’Études Internationales de la Propriété Industrielle Université Robert Schumann, Strasbourg, France, since 1996.

Ennio Tasciotti, PhD, is an associate professor in the Department of Nanomedicine and Biomedical Engineering at the Methodist Hospital Research Institute. He received an MS in biological sciences from the University of Pisa in 2000 and a PhD in molecular medicine from Scuola Normale Superiore in 2005.

Pekka Valkonen is a patent manager at Fortum Corporation, a Scandinavian Euro STOXX company in the utility sector. He is responsible for intellectual property matters of major business units within the company. He deals with patents, trademarks, domain names, and research agreements. When handling the IP matters of spinoff of companies, Valkonen has made himself familiar with IP matters in small technology-based companies. Before the formation of Fortum Corporation, he worked at Neste Corporation, where he was responsible for patent matters in specialty polymers and especially electrical conducting polymers. He began his IP career in the Finnish Patent Office as an examiner, senior examiner, and consulting manager. Valkonen has lectured on utilizing patents in business, valuation of IP, and patent strategies.
Pieter de Witte obtained his PhD in supramolecular chemistry from Radboud University in Nijmegen in 2004, after which he became a postdoctoral researcher at ISIS institute of Strasbourg University, France. From 2004 to 2008 he was program officer for the Dutch national nanotechnology program NanoNed, at Technology Foundation STW, where he coordinated the utilization program and the interactions between industrial users and academic research programs. Since 2008, Dr. de Witte has been working at FOM Foundation and is responsible for collaborations with industry, in particular the coordination of the Industrial Partnership Programme (IPP).

Po Chi Wu is an adjunct professor in the School of Business and Management at the Hong Kong University of Science and Technology and a visiting professor and co-founder of the Global Innovation Research Center in the School of Software and Microelectronics at Peking University in Beijing, China. He is a co-founder and managing director of Dragon Bridge Capital, a merchant banking firm helping Chinese and US technology companies become global citizens. Dr. Wu has been a venture capitalist and entrepreneur for more than 25 years and has invested in early-stage high-tech and life science companies in Silicon Valley and Asia. He has a PhD in biochemistry and molecular biology from Princeton University and a BA in mathematics and music from the University of California at Berkeley.
Foreword

Nanotechnology holds great promise for the future of humankind, and scientists and managers should be aware of this. Public and private sector investments in nanotech research have increased exponentially in the past two decades. We are now facing a future, not too far beyond the present, in which materials and devices with astonishing properties will completely change the rules of the game. Novel products will possess features that were almost unimaginable just a few years ago.

Until recently, universities and research centers around the world had been the prime actors in this developing revolution because nanotechnology research requires the skills of interdisciplinary teams that are most readily found in academia. What we are seeing today is a paradigm shift into the entrepreneurial arena. More and more pure researchers are getting involved in spinoff ventures that spring from the academic setting, and there is a need for interdisciplinary knowledge that combines scientific and managerial skills. At the same time, managers who expect to become involved in near-term nanotechnology enterprises require basic knowledge of the wide range of current applications in this fascinating field.

This book is a valuable attempt to satisfy these objectives. Authors with diverse backgrounds offer insight and useful advice both to scientists who may be seeking to capitalize their nanotech research through the creation of a new venture and to managers who need to know how and why this unique technology domain is regulated. The book focuses strongly on the creation and monetization of the intellectual property related to nanotechnology inventions, starting from the conception of the patentable idea and progressing through the venture capital stage.
and also nanotechnology regulation. The full pipeline of present-day nanotechnology is examined through the expert eyes of patent attorneys, professors, regulation experts, managers, and scientists, with helpful comparisons of IP issues in the United States and Europe.

I have found this volume to be very useful in my own work. Anyone who is interested in starting a nanotechnology-based venture or who wishes to understand how to manage one should read this book to become more aware of the opportunities and challenges that nanotechnology will bring into our lives.

Robert A. Freitas Jr.
Preface

Nanotechnology will have a large impact on our future, but a lot of research and development (R&D) projects have yet to be conducted. This R&D will require extraordinary efforts from individuals and groups in universities, research institutes, and the industry. Unfortunately, scientific genius does not always equal commercial success. In order to benefit commercially from one’s research, or even to prevent others from obstructing research, a myriad of factors need to be taken into account. Many of those, for example, environment, health and safety regulations, academy-industry cooperation, intellectual property, and attracting investments, come into play well before and during the research process. This book intends to provide the reader with the basics of the most relevant factors that need to be taken into account before, during, and after the R&D phase. Although some of the subjects discussed are highly complicated, the authors have written the chapters in a way that makes them understandable for professionals who are not familiar with the topic at hand.

The nanoscale brings many challenges to scientists who deal with it. Some of its unique characteristics also pose challenges in the process of commercialization. This book discusses these nanospecific challenges. While most chapters and parts of chapters are nano-specific, others are of a more general nature, either because a more general discussion is needed in order to understand the nano-specific part or because, despite not being nano-specific, they are essential in the commercialization process.

To provide our readers with the best possible information, we relied upon the expertise of a great and diverse team of authors: Joanna Brougher, Niklas Bruun, Rachel Buchanan, Bärbel Dorbeck-Jung, Michael Heintz, Kaarle Hämeri, Efrat Kasznik, Michael Landau,
Preface

Hanna Laurén, Claes Post, Sarah Rouse, Christine Smid, Marco Spadaro, Ennio Tasciotti, Pekka Valkonen, Pieter de Witte, and Po Chi Wu. We wish to extend our deepest gratitude to them for sharing their expertise and for their commitment and diligence during the entire process.

We are also very grateful to Stanford Chong, the publisher of this work, and to his editorial team for having made the realization of a book with so many authors a smooth and enjoyable experience.

Wim Helwegen and Luca Escoffier
Helsinki and Tokyo
September 2011