Handbook of Therapeutic Biomarkers in Cancer
Handbook of Therapeutic Biomarkers in Cancer
Contents

Preface

1. **Overview: Therapeutic Biomarkers in Cancer**
 Sherry X. Yang and Janet E. Dancey
 1.1 Introduction
 1.2 Classification of Therapeutic Biomarkers
 1.3 Chemotherapy Agents and Therapeutic Biomarkers
 1.4 Targeted Cancer Therapeutics and Biomarkers
 1.4.1 Targeted Cancer Therapeutics
 1.4.2 Biomarker Validation
 1.4.3 Therapeutic Biomarkers of Targeted Therapy
 1.4.3.1 Direct drug targets as therapeutic biomarkers
 1.4.3.2 Indirect drug targets as therapeutic biomarkers
 1.4.3.3 Anti-angiogenesis therapy and biomarkers
 1.5 Targeted Therapeutics in Combination with Chemotherapy and Therapeutic Biomarkers
 1.6 Multi-Gene Expression or Signatures for Cancer Prognosis and Treatment
 1.7 Diagnostic Techniques for Therapeutic Biomarkers
 1.8 Conclusions and Perspectives

2. **Statistical Considerations in the Development and Evaluation of Therapeutic Biomarkers in Cancer**
 Lisa M. McShane, Edward L. Korn, and Boris Freidlin
 2.1 Introduction
 2.2 Analytical Performance of a Biomarker-Based Test
 2.3 Prognostic versus Predictive Biomarkers
2.4 Biomarker Evaluations in Phase I Trials 38
2.5 Biomarker Evaluations in Phase II Trials 40
 2.5.1 Designs Involving Single Biomarkers 42
 2.5.2 Designs Involving Multiple Biomarkers 43
2.6 Biomarker Evaluations in Phase III Trials 44
 2.6.1 Biomarker-Stratified Designs 44
 2.6.2 Enrichment Designs 47
 2.6.3 Biomarker-Strategy Designs 49
 2.6.4 Designs in Which the Biomarker Has Not Been Completely Specified 50
2.7 Summary 52

3. Role of Biomarkers in Clinical Development of Cancer Therapies 59
 Helen X Chen
3.1 Introduction 59
3.2 A Few Definitions and General Concepts 60
3.3 Role of Biomarkers in the Different Stages of Drug Development 63
 3.3.1 Use of PD Markers in Phase I and Early-Stage Proof of Principle Studies 64
 3.3.1.1 Role of PD markers in verifying target engagement 64
 3.3.1.2 Role of PD markers in decisions on the recommended phase II dose (RP2D): value and limitations 65
 3.3.1.3 Use of distal PD markers to measure the biological and molecular consequences of target inhibition 67
 3.3.2 Incorporation and Exploration of Patient Selection Markers in Early Clinical Trials 68
 3.3.2.1 Trial design for patient selection markers 70
 3.3.2.2 Scientific and technical challenges of predictive markers 71
3.4 Conclusions and Future Directions 73
4. HER-2 as a Prognostic and Predictive Biomarker in Cancer

Suparna B. Wedam and Stanley Lipkowitz

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Biology of HER-2</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>HER-2 Amplification and Overexpression: Methods of HER-2 Measurement</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>HER-2 Amplification as a Prognostic Biomarker in Breast Cancer</td>
<td>85</td>
</tr>
<tr>
<td>4.5</td>
<td>HER-2 Amplification as a Predictive Biomarker for Response to HER-2 Targeted Agents in Breast Cancer</td>
<td></td>
</tr>
<tr>
<td>4.5.1</td>
<td>Trastuzumab</td>
<td>86</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Lapatinib</td>
<td>91</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Pertuzumab</td>
<td>93</td>
</tr>
<tr>
<td>4.6</td>
<td>HER-2 Amplification as a Predictive Biomarker for Response to Chemotherapy in Breast Cancer</td>
<td>93</td>
</tr>
<tr>
<td>4.7</td>
<td>HER-2 Amplification as a Predictive Biomarker for Response to Hormonal Therapy in Breast Cancer</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Serum HER-2 Extracellular Domain (ECD) as a Biomarker in Breast Cancer</td>
<td>98</td>
</tr>
<tr>
<td>4.9</td>
<td>HER-2 Amplification as a Prognostic Biomarker and a Predictive Biomarker for Response to HER-2 Targeted Agents in Other Cancers</td>
<td></td>
</tr>
<tr>
<td>4.9.1</td>
<td>Gastric Cancer</td>
<td>99</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Ovarian Cancer</td>
<td>100</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Non-Small Cell Lung Cancer (NSCLC)</td>
<td>101</td>
</tr>
<tr>
<td>4.9.4</td>
<td>Transitional Cell Carcinoma (TCC) of the Urothelium</td>
<td>101</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Colorectal Cancer</td>
<td>102</td>
</tr>
<tr>
<td>4.9.6</td>
<td>Other Tumors</td>
<td>102</td>
</tr>
<tr>
<td>4.10</td>
<td>Conclusions</td>
<td>102</td>
</tr>
</tbody>
</table>

5. Hormone Receptors and Endocrine Therapy in Breast Cancer

Sherry X. Yang

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>122</td>
</tr>
<tr>
<td>5.2</td>
<td>Biology of Hormone Receptors</td>
<td>122</td>
</tr>
</tbody>
</table>
Contents

5.3 ER/PgR as Prognostic and Therapeutic Biomarkers 123
 5.3.1 ER and PgR as Prognostic Factors in Breast Cancer 124
 5.3.2 ER and PgR as Therapeutic Biomarkers in Breast Cancer 125

5.4 ER/PgR Targeted Therapy for Breast Cancer 127
 5.4.1 Adjuvant Endocrine Therapy 133
 5.4.1.1 Premenopausal patients 133
 5.4.1.2 Postmenopausal patients 134
 5.4.2 Endocrine Therapy for Recurrent and Metastatic Disease 137
 5.4.3 Neoadjuvant Endocrine Therapy 139

5.5 Endocrine Therapy Resistance 139

5.6 Diagnostic Tests for ER and PgR 141
 5.6.1 Methods for Evaluation of ER/PgR Expression 141
 5.6.2 Immunohistochemical Testing for ER and PgR 142

5.7 Conclusions 143

6. Predictive Biomarkers for Epidermal Growth Factor Receptor Agents in Non-Small Cell Lung Cancer 155

John Hilton, Penelope A. Bradbury, and Janet Dancey

6.1 Introduction 155
6.2 The Epidermal Growth Factor Receptor Family 156
6.3 Signal Transduction Pathways Controlled by the Activation of EGFR 157
6.4 EGFR Inhibitors for the Management of NSCLC 158
6.5 Activating EGFR Receptor Mutations 163
6.6 Biomarkers for Acquired Resistance to EGFR TKIs 167
6.7 EGFR Gene Amplification and Increased Protein Levels 167
6.8 K-Ras Mutations and Anti-EGFR Therapy 170
6.9 EGFR Ligands 171
6.10 Polymorphism Studies and Anti-EGFR Therapy 172
6.11 Circulating Tumor Cells in NSCLC Biomarker Research 173
6.12 Conclusions 174
7. Markers of Sensitivity and Resistance to EGFR Inhibitors in Colorectal Cancer 183

Jose G. Monzon and Janet Dancey

7.1 Introduction 183

7.2 The Epidermal Growth Factor Receptor (EGFR) Pathway and Colorectal Cancer 184
 7.2.1 RAS/RAF/MAPK Pathway 186
 7.2.2 PI3K/AKT Pathway 187

7.3 EGFR Inhibitors Used in Metastatic Colorectal Cancer (mCRC) 187

7.4 Determinants of Sensitivity and Resistance to EGFR Targeting moAbs 193
 7.4.1 Clinical Features 194
 7.4.1.1 EGFR inhibitor induced-skin rash 194
 7.4.2 Potential predictive Genetic Alterations of the EGFR pathway in patients with mCRC 195
 7.4.2.1 KRAS mutations 195
 7.4.2.2 KRAS mutation detection 195
 7.4.2.3 Specimen selection for KRAS mutation testing 198
 7.4.2.4 Prognostic significance of KRAS mutation status 199
 7.4.2.5 Predictive significance of KRAS mutation status 199
 7.4.2.6 BRAF mutations in patients with mCRC 204
 7.4.2.7 BRAF mutation detection in patients with mCRC 205
 7.4.2.8 Specimen selection for BRAF mutation testing 205
 7.4.2.9 Prognostic and predictive role of BRAF mutations 205
 7.4.2.10 KRAS Let-7 single nucleotide polymorphism 206

7.4.3 Genetic Mutations Affecting the EGFR Gene 207
 7.4.3.1 Somatic EGFR gene mutations 207
 7.4.3.2 EGFR gene copy number 208
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.3.3</td>
<td>Measuring EGFR gene copy number</td>
<td>208</td>
</tr>
<tr>
<td>7.4.3.4</td>
<td>Specimen selection for EGFR gene copy number</td>
<td>209</td>
</tr>
<tr>
<td>7.4.3.5</td>
<td>Prognostic value of EGFR gene copy number</td>
<td>209</td>
</tr>
<tr>
<td>7.4.3.6</td>
<td>Predictive role of EGFR gene copy number</td>
<td>211</td>
</tr>
<tr>
<td>7.4.3.7</td>
<td>PIK3CA mutations</td>
<td>212</td>
</tr>
<tr>
<td>7.4.3.8</td>
<td>Measuring PIK3CA mutations</td>
<td>212</td>
</tr>
<tr>
<td>7.4.3.9</td>
<td>Specimen selection for PIK3CA mutation testing</td>
<td>212</td>
</tr>
<tr>
<td>7.4.3.10</td>
<td>Predictive role of PIK3CA mutation testing</td>
<td>213</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Potential Predictive Alterations in Gene Expression of the EGFR Pathway</td>
<td>213</td>
</tr>
<tr>
<td>7.4.4.1</td>
<td>EGFR protein expression</td>
<td>213</td>
</tr>
<tr>
<td>7.4.4.2</td>
<td>EGFR ligands: amphiregulin and epiregulin</td>
<td>214</td>
</tr>
<tr>
<td>7.4.4.3</td>
<td>PTEN loss of expression</td>
<td>215</td>
</tr>
<tr>
<td>7.4.4.4</td>
<td>Measuring PTEN expression</td>
<td>215</td>
</tr>
<tr>
<td>7.4.4.5</td>
<td>Predictive role of loss of PTEN expression</td>
<td>216</td>
</tr>
<tr>
<td>7.5</td>
<td>Future Directions</td>
<td>217</td>
</tr>
</tbody>
</table>

8. Targeting BCR-ABL for Molecular Therapy of Chronic Myelogenous Leukemia

Shamudheen Rafiyath, Guoqing Wei, and Delong Liu

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Pathogenesis</td>
<td>234</td>
</tr>
<tr>
<td>8.2</td>
<td>Structure of BCR-ABL</td>
<td>235</td>
</tr>
<tr>
<td>8.3</td>
<td>Mechanism of CML</td>
<td>236</td>
</tr>
<tr>
<td>8.4</td>
<td>Essential Features of BCR-ABL</td>
<td>237</td>
</tr>
<tr>
<td>8.5</td>
<td>Targeted Therapies of Chronic Myeloid Leukemia</td>
<td>238</td>
</tr>
<tr>
<td>8.5.1</td>
<td>First-Generation Tyrosine Kinase Inhibitors</td>
<td>238</td>
</tr>
<tr>
<td>8.5.1.1</td>
<td>Imatinib mesylate</td>
<td>238</td>
</tr>
<tr>
<td>8.5.1.2</td>
<td>Monitoring</td>
<td>240</td>
</tr>
</tbody>
</table>
9. Gastrointestinal Stromal Tumors: From Molecular Pathogenesis to Therapy

Joaquina Baranda, Rashna Madan, and Andrew K. Godwin

9.1 Introduction

9.2 Molecular Pathogenesis of GIST

9.2.1 Mutations in RTKS: KIT

9.2.2 Mutations in RTKs: PDGFRA

9.2.3 BRAF Mutation

9.3 Hereditary, Syndromic and Variant GISTs

9.3.1 Hereditary/Familial GISTs

9.3.2 Neurofibromatosis I (NF1)-Associated GISTs

9.3.3 Carney’s Triad-associated GISTs

9.3.4 Carney–Stratakis Syndrome (Carney’s Dyad)

9.3.5 Pediatric GISTs

9.3.6 Risk Assessment

9.4 Treatment of GIST

9.4.1 Imatinib Mesylate

9.4.1.1 Efficacy of imatinib in patients with advanced GIST

9.4.1.2 Dose and efficacy
9.4.1.3 Duration of therapy 280
9.4.1.4 Management of toxicities 281
9.4.2 Sunitinib 282
9.4.2.1 Management of sunitinib toxicities 284
9.4.3 Sorafenib and Other Tyrosine Kinase Inhibitors 285
9.4.3.1 Assessment of response to therapy 286
9.4.3.2 Adjuvant therapy 287
9.4.4 Biomarkers That Predict Benefit, Response, and Resistance to Therapy 287
9.4.4.1 Response predictors in GIST 287
9.4.4.2 Imatinib plasma levels 290
9.4.4.3 Drug interactions 291
9.4.4.4 Imatinib resistance and intolerance 291
9.4.4.5 Benefit of imatinib as a function of risk stratification 292
9.4.4.6 Molecular biomarkers of therapeutic response 293

9.5 Summary 295

10. PML/RARα Fusion Gene and Response to Retinoic Acid and Arsenic Trioxide Treatment 313
Alicja M. Gruszka and Myriam Alcalay

10.1 Introduction 314
10.1.1 Description of Acute Promyelocytic Leukaemia 314
10.1.2 Modern Therapeutic Approaches 315
10.1.3 Treatment Complications and Prognosis 316

10.2 Molecular Pathogenesis 316
10.2.1 Translocation (15;17) and Cloning of the Fusion Gene 316
10.2.2 Partner Genes and Their Physiological Function 317
10.2.3 Mechanisms of Action of PML/RARα 318
10.2.3.1 Global transcriptional repression 319
10.2.3.2 Transcriptional activation 321
10.2.3.3 Deregulation of other haematopoietic transcription factors 322
10.2.3.4 Protein misfolding 323
10.2.4 Consequences of the Expression of PML/RARα 323
10.2.4.1 Differentiation block 323
10.2.4.2 Enhanced self-renewal 323
10.2.4.3 Apoptosis resistance 324
10.2.5 The Role of Cooperating Mutations 325
10.3 Mechanisms of Action of ATRA and Arsenic Trioxide 326
10.3.1 Mechanisms of ATRA Action 326
10.3.2 Mechanisms of Arsenic Trioxide Action 327
10.3.3 Synergy Between ATRA and Arsenic Trioxide 329
10.4 Conclusions 330

11. Dihydropyrimidine Dehydrogenase Deficiency and 5-Fluorouracil Toxicity 337
Eva Gross and André B. P. van Kuilenburg
11.1 Introduction 337
11.2 Variability of the DPYD Gene 338
11.3 Epigenetic and Non-Genetic Effects on DPYD Dysregulation 341
11.4 Functional Testing of the DPD Status 342
11.5 Conclusion 343

12. UGT1A1 Polymorphisms and Mutations Lead to Irinotecan-Induced Toxicity 353
K. M. Reece and W. D. Figg
12.1 Irinotecan 353
12.2 The UGT1A Gene Complex 356
12.3 Pharmacogenetics of UGT1A1 357
12.4 Ethnic Differences in UGT1A1 Variants 359
12.5 Crigler–Najjar Syndrome 360
12.6 Gilbert’s Syndrome 363
12.7 Conclusion 363
13. The 21-Gene Recurrence Score and Benefit of Chemotherapy in Estrogen Receptor-Positive Breast Cancer

Petra Rietschel and Joseph A. Sparano

13.1 Introduction 369
13.2 Genomics 370
13.3 Development and Validation of Multiparameter Assays 370
13.4 Development of the 21-Gene Recurrence Score 371
13.5 Recurrence Score and Prognosis 374
13.6 Recurrence Score and Prediction of Chemotherapy Benefit 378
13.7 Impact of RS on Clinical Decision Making 379
13.8 Gene Expression Profiles and Expert Panels 381
13.9 Prospective Clinical Trials Evaluating Multiparameter Assays 382
13.10 Conclusion 382

14. MammaPrint for Individualized Recurrence Risk Assessment and Treatment Recommendations for Early-Stage Breast Cancer Patients

Sonal J. Desai and Tianhong Li

14.1 Introduction 387
14.2 Discovery of MammaPrint 388
14.3 Retrospective Clinical Validation 389
14.4 Analytic Development for MammaPrint as a Diagnostic Test 397
14.5 Prospective Clinical Validation of MammaPrint 398
14.6 Biologic Implication of MammaPrint Results 400
14.6.1 Understanding of Tumor Biology 400
14.6.2 Revealing New Therapeutic Targets 401
14.6.3 Prediction for Response or Resistance to Chemotherapy 403
14.6.4 Elucidation of Resistant Mechanisms to Chemotherapy 405
14.7 Potential Advantages of MammaPrint as a Prognostic Test 406
14.8 Challenges in Clinical Application of MammaPrint 407
14.9 Summary and Perspectives 408
15. **BRCA Mutation and PARP Inhibitors**

Marcie K. Weil, Shivaani Kummar, James H. Doroshow, and Alice Chen

15.1 Introduction 417
15.2 *BRCA* 418
15.3 Poly (ADP-Ribose) Polymerase (PARP) 422
15.4 PARP Inhibitors as Single Agents to Induce Synthetic Lethality in *BRCA* Tumor Cells 425
15.5 PARP Inhibitors in Combination with Cytotoxic Therapy 426
15.6 PARP Inhibitors in Combination with Ionizing Radiation (XRT) 428
15.7 Clinical Development of PARP Inhibitors 428
15.7.1 Olaparib (AZD 2281, KU-0059436) 428
15.7.1.1 *BRCA*-mutation ovarian cancer and olaparib 429
15.7.1.2 *BRCA*-mutation associated breast cancer and olaparib 431
15.7.2 Veliparib (ABT888) 431
15.7.2.1 *BRCA* breast and ovarian cancers and TNBC with veliparib 432
15.7.3 Rucaparib (AG014699, PF01367338) 432
15.7.4 Iniparib (BSI 201, NSC-746045; IND-71677) 434
15.7.5 Niraparib (MK 4827) 435
15.8 Acquired Resistance to PARP Inhibitors 435
15.9 Future Directions 437

16. **EML4-ALK Fusion Gene and Therapy with ALK-Targeted Agents in Non-Small Cell Lung Cancer**

Vimal Patel and Biren Saraiya

16.1 Introduction 449
16.2 The Identification of *EML4-ALK* in NSCLC 450
16.2.1 The Structure and Function of EML4 451
16.2.2 The Structure and Function of ALK 452
16.2.3 The ALK Gene Rearrangements in Cancer 453
16.2.4 The Structure of *EML4-ALK* and Other Non-EML4 Translocation Partners 454
16.2.5 The Transforming Activity of EML4-ALK 455
16.3 Clinical and Pathologic Features of EML4-ALK 456
16.4 Methods of Detection 458
16.4.1 Reverse Transcriptase-PCR Based Detection 459
16.4.2 Immunohistochemistry Based Detection 459
16.4.3 Fluorescence in situ Hybridization Based Detection 460
16.4.4 Potential Concerns Independent of the Method of Detection 462
16.5 Outcomes with Current Standard NSCLC Therapies 463
16.5.1 Preclinical ALK Targeted Therapies in NSCLC 464
16.5.2 Clinical Studies with Crizotinib 465
16.5.3 Resistance to Crizotinib and Emergence of New ALK Inhibitors 465
16.6 Future Directions 466

17. BRAF-Targeted Therapy in Metastatic Melanoma 473
Noori Kim and April Deng
17.1 Introduction 473
17.2 BRAF and the MAPK Pathway 474
17.3 BRAF V600E Mutation in Melanoma 476
17.4 Sorafenib and PLX4032 478
17.5 Other RAF Inhibitors 481
17.6 BRAF Inhibition Resistance Mechanisms 482
17.6.1 The Role of RAF Isoforms 482
17.6.2 The Role of IGF-1R and PI3K-AKT Pathway 483
17.6.3 Amplification of Cyclin-Dependent Kinase 484
17.6.4 The Role of Growth Factors 484
17.6.5 The Role of Cytokines 484
17.7 Final Thoughts 485

Index 491
Preface

The advent of the era of the molecularly targeted therapy in oncology in addition to conventional multimodality management signifies more hope for cancer patients. The discovery, validation, and clinical applications of biomarkers of prognosis and prediction are advancing the promise of personalized medicine. The clinically validated therapeutic (predictive) biomarkers for targeted and chemotherapy agents approved for use or having potential to be approved by the regulatory agencies such as the United States Food and Drug Administration facilitate the evolution of empiric therapy to individually tailored treatment. In essence, therapeutic biomarkers and appropriately validated clinical assays facilitate treatment decision-making. We have clearly entered the epoch that patients can receive the right drugs with the right doses at the right time with greater assurance of maximal benefits and reduced risks.

In editing and organizing the *Handbook of Therapeutic Biomarkers in Cancer*, we have made every attempt to cover the growing numbers of promising predictive biomarkers and associated assays in the fields of oncology and cancer research. We hope that many readers—oncologists, health professionals, patients, scientists involved in basic, translational, and clinical research, educators, and students both medical and undergraduate—will find each chapter of this book a valuable source of information and guidance.

It has been a great privilege to be involved in editing this book. We express our sincere thanks to all authors who have contributed their expertise, experience, and hard work to this book for publication. In addition, we welcome comments for planning future editions.

Sherry X. Yang
Janet E. Dancey