"The integration of several concepts and technologies to make personalized medicine an efficient daily practice has been quite difficult but a critical issue of vast importance. Handbook of Personalized Medicine represents a genuine effort to achieve such a long-term goal. A major source of information written in a well-organized fashion in more than 1500 pages, this handbook is the result of long-term hard work of both the editor and the contributors and covers almost everything directly or indirectly related to personalized medicine, including nanotechnologies, materials needed for specific drug delivery systems, medical imaging technologies, pharmacogenomics, drug response variability, drug metabolism and toxicity, pharmacovigilance, and pharmacokinetics, as well as bioinformatics and model construction to facilitate improvement of drug delivery and therapy. Each chapter has been contributed by active investigators who are well-known experts and come from different countries and various sectors: academia, pharmaceutical industry, computer companies, pharmacy, and clinical medicine. The book can be of added value to every scientist, investigator, or regulatory pharmacist or clinical pharmacologist, developer in pharmaceutical industry, and to teachers in academia as well as students. It fills a gap in the provocative field of personalized medicine."

Prof. Asterios S. Tsiftsoglou
Aristotle University of Thessaloniki, Greece

This book compiles multidisciplinary efforts of recent advancements in pharmacology, nanotechnology, genomics, informatics, and therapeutics, aiming to conceptualize the environment in research and clinical setting that creates a fertile ground for the practical utility of personalized medicine decisions and also enables clinical pharmacogenomics to establish pharmacotyping in drug prescription—that is, the individualized drug and dosage schema selection based on both clinical and genetic data. Within this context, its chapter organization is unique, including innovative drug formulations and nanotheranostics, nanotoxicology, molecular imaging and signatures, translational nanomedicine and informatics, stem cell therapy approaches, modeling and predictability of drug response, pharmacogenetics-guided drug prescription, pharmacovigilance and regulatory aspects, ethical and cost-effectiveness issues, pharmacogenomics knowledge bases, personal genome sequencing, molecular diagnostics, education and training, as well as information-based medicine to support workflow infrastructure in everyday clinical practice worldwide.

Ioannis S. Vizirianakis is associate professor of molecular pharmacology and pharmacogenomics at Aristotle University of Thessaloniki (A.U.Th.), School of Pharmacy. After receiving his degree in pharmacy (1981) from A.U.Th., he joined the university’s Department of Pharmaceutical Sciences as research assistant (1981–1985), obtained a Ph.D. (1991) in biochemical pharmacology, and finally was assigned as lecturer (1993) and then assistant professor (2003) of pharmacology. Prof. Vizirianakis has coauthored more than 55 papers and book chapters in internationally peer-reviewed journals and also published books. He has contributed to more than 80 abstracts in national and international conferences, including over 30 invited presentations. His long-term research interests focus on the development of innovative anticancer therapeutics as well as the integration of pharmacogenomics, personalized medicine, and nanomedicine concepts in new drug development, drug delivery, and clinical practice.
HANDBOOK OF
PERSONALIZED MEDICINE
Advances in Nanotechnology, Drug Delivery, and Therapy

edited by
Ioannis S. Vizirianakis
This volume is dedicated to

my parents, Aimilia and Spiros, whose perspective on life, work, and behavior shows me the way to grow, improve, and progress as a human being by putting tasks and achieving targets, as well as keeping dreams alive, both as a person and in academia

my wife, Lila, and my kids, Emily and Spiros, whose continuous contact, devotion, and love show me the way to behave and better handle issues related to community and society, thus permitting me to follow dreams and run toward realistic targets

my students and colleagues for their trust, collaboration, and contribution that give me an opportunity to become a better teacher as well as to enrich knowledge, skills, and expertise, thus making research projects a reality and finally a success
Contents

Preface xxxiii

1 Nanotechnology toward Advancing Personalized Medicine 1
 Jason H. Sakamoto, Biana Godin, Ye Hu, Elvin Blanco,
 Anne L. van de Ven, Adaikkalam Vellaichamy,
 Matthew B. Murphy, Saverio La Francesca,
 Terry Schuenemeyer, Bruce Given, Anne Meyn, and
 Mauro Ferrari
 1.1 Introduction 1
 1.2 Conventional Cancer Chemotherapeutics 3
 1.2.1 A Brief History 3
 1.2.2 A Summary of Conventional Anticancer Drugs 5
 1.3 Concept of Personalized Medicine 8
 1.4 Nanotechnology in Medicine 8
 1.5 Injectable Therapeutics 9
 1.5.1 Personalization by Design of Nanovectors with
 Lesion-Specific Transport Properties 9
 1.6 Molecular Imaging 16
 1.6.1 Collection of Patient-Specific Data for Tailoring Treatments 16
 1.7 Early Detection 18
 1.7.1 The -Omic Technologies and Systems Biology:
 Resolving the "Portrait of Health" 18
 1.7.1.1 Microarray technology 19
 1.7.1.2 Nanodiagnostics 20
 1.7.1.3 Nanofluidics 22
 1.7.1.4 Biomarker discovery 23
 1.8 Regenerative Medicine and Tissue Engineering 26
Contents

1.8.1 Stem Cells for Regenerative Medicine 27
1.8.2 Controlled Drug Release 28
1.8.3 Nanotechnology and Biomaterials 29
1.9 The Role of Nanotechnology and Personalized Medicine 30
1.10 Vantage Points: Nanomedicine Advancing Personalized Medicine 31
 1.10.1 The Evolutionary Process of Personalized Medicine: The Real Drivers of Innovation 31
 1.10.2 A Physician’s Perspective 31
 1.10.3 A Regulatory Consultant’s Perspective 34
 1.10.4 A Biotech Startup CEO’s Perspective 40
 1.10.5 A Patient Advocate’s Perspective 43
1.11 Summary 45

2 RNAi Nanomedicines toward Advancing Personalized Medicine: Challenges and Opportunities for Targeted Therapy in the Immune System 59
Dan Peer
2.1 Introduction 60
 2.1.1 Cellular Delivery Strategies of RNAi 61
 2.1.2 Translation of siRNA into Clinical Practice 62
 2.1.2.1 In vivo delivery of siRNA 62
 2.1.2.2 Passive systemic siRNA delivery 64
 2.1.2.3 Active (cellular-targeted) systemic siRNA delivery 66
 2.1.2.4 Targeted delivery systems for leukocytes 69

3 Impact of Current Medical Imaging Technologies on Individualized Patient-Specific Cancer Management: A Clinical Perspective 81
Sandip Basu
3.1 Reasons for an Individualized Approach in an Era of Evidence-Based Medicine in Oncology 82
3.2 Reasons Molecular Imaging Is at the Forefront of Personalized Cancer Medicine 83
3.3 Medical Imaging Modalities with Significant Potential toward Advancing Personalized Cancer Medicine 84
3.4 Radionuclide Functional Imaging vs. Conventional Morphological Imaging Methodologies: Advantages of the Former with Regard to Materializing the Concept of Personalized Cancer Medicine 85
 3.4.1 The Functional Radionuclide Modalities 85
 3.4.1.1 Targets in functional radionuclide imaging that have a bearing on a personalized approach in oncology 85
 3.4.1.2 Management of individualization in various decision-making steps in cancer with functional radionuclide modalities 87
 3.4.1.3 Post-treatment disease surveillance 93
 3.4.1.4 Other advantages of whole-body FDG-PET imaging 95
3.5 Functional Molecular Imaging with US: The Potentials toward Personalization 95
 3.5.1 Basic Principle 95
3.6 Functional Molecular Imaging with MRI: The Potential toward Personalization 98
 3.6.1 Molecular Optical Imaging 99
 3.6.1.1 Principle of bioluminescence imaging 100
 3.6.1.2 Principle of fluorescence imaging 100
 3.6.1.3 Translation into molecular imaging 101
3.7 Conclusion 101

4 Boron Neutron Capture Therapy: Active Agents and Lipid Carriers 109

Dimitrios G. Fatouros, Gianpiero Calabrese, Eugen Borbu, Marta Roldo, Andriani G. Fatourou, and John Tsibouklis

4.1 Introduction 109
4.2 Liposomal Carriers for Delivery to the Brain 111
4.3 Boron Neutron Capture Therapy 112
4.4 Liposomes and Boron 114
 4.4.1 Encapsulation of Boronated Agents into Liposomes 114
Contents

4.4.2 Boron-Based Liposomes 117
 4.4.2.1 Nido-carborane liposomes 117
 4.4.2.2 Closo-dodecaborate-based liposomes 118
 4.4.2.3 Closo-dodecaborate cholesterols 120

4.5 Formulation Stability Studies 120

4.6 Conclusions 121

5 Cytotoxicity Challenges in Development of Personalized Nanomedicines: Focus on Nucleic Acid Delivery Systems 129
 Ladan Parhamifar and S. Moein Moghimi

 5.1 Introduction 129
 5.2 Nanoparticle Toxicology 131
 5.3 Toxicity Considerations and Assessment of Polycation Safety in Gene Therapy 131
 5.4 Toward Integrated Approaches 134
 5.4.1 Systems Biology 135

6 Drug Bioavailability and Gene Profiling: Challenges and Opportunities for Pharmaceutics and Personalized Medicine 141
 Afzal R. Mohammed, Amr M. ElShaer, Rhys J. Jones, Sheraz Khan, and Craig A. Russell

 6.1 Introduction 141
 6.1.1 Dosage Form Factors That Affect Drug Bioavailability 142
 6.1.2 Physiological Factors of the Gastrointestinal Tract That Affect Drug Bioavailability 145
 6.1.3 Mechanisms and Transport Routes of Drug Absorption in the Gastrointestinal Tract 148

 6.2 Methods of Assessing Drug Permeability 151
 6.2.1 In vitro Assessment of Permeability 152
 6.2.1.1 Excised tissue permeability assays 152
 6.2.1.2 Cell-based and membrane-based permeability assays 152
 6.2.1.3 Physicochemical assessment of permeability 155
 6.2.2 In vivo Assessment of Permeability 155
 6.2.2.1 In silico assessment of permeability 156
6.2.3 In vitro–in vivo Correlations 159
6.2.4 In silico–in vitro–in vivo Correlations 160
6.3 Obstacles Facing Drug Absorption 161
 6.3.1 Membrane Transporters 162
 6.3.1.1 ATP-binding cassette transporters 162
 6.3.1.2 P-glycoprotein 164
 6.3.1.3 Solute carrier transporters 167
6.4 Microarrays 168
 6.4.1 Types of Microarrays 172
 6.4.2 Procedure for Setting Up Microarray Studies 173
6.5 Applications of Microarrays 175
 6.5.1 Drug Permeability and Bioavailability 175
 6.5.2 Drug–Drug Interactions and Drug Toxicity 178
 6.5.3 Gene Discovery 178
 6.5.4 Personalized Medicine 179
 6.5.5 Drug Development 183
 6.5.6 Challenges in Microarrays 184

7 Translational Bioinformatics and Systems Biology in Personalized Medicine 191
 Qing Yan
 7.1 Introduction: Challenges and Opportunities 192
 7.2 Personalized Medicine and Systems Biology 194
 7.2.1 Pharmacogenomics, Systems Biology, and Personalized Medicine 194
 7.2.2 Systems Biomarkers 195
 7.3 Translational Bioinformatics 197
 7.3.1 The Need for Translational Bioinformatics 197
 7.3.2 What Is Translational Bioinformatics? 198
 7.3.3 Benefits of Translational Bioinformatics 199
 7.3.4 Objectives and Missions of Translational Bioinformatics 200
 7.4 Applying Translational Bioinformatics Methods in Systems Biology and Personalized Medicine 201
 7.5 Technical Methods in Translational Bioinformatics for Personalized Medicine 204
Contents

7.5.1 Data Integration and Workflow Integration 204
 7.5.1.1 The need for data and workflow integration 204
 7.5.1.2 Benefits of data and workflow integration 205
 7.5.1.3 Methods of data and workflow integration 206
7.5.2 Data Standardization and Knowledge Representation 208
7.5.3 Biomedical Decision Support 209
7.5.4 Data Mining and Knowledge Discovery 210
7.5.5 Future Prospects and Ethical Issues Relevant to EMRs 212
7.6 Conclusion 213

8 The Development of Informatics Platforms to Help Drive Systems Medicine 221
 Subha Madhavan

8.1 Motivation and Definitions 221
8.2 Opportunity and Potential Impact 223
 8.2.1 Problem Scenarios 223
8.3 Key Ingredients of Systems Medicine 228
 8.3.1 Data Collection, Quality Control, and Organization 228
 8.3.2 Standards 230
 8.3.3 Scientific Infrastructure Needs 231
 8.3.4 Data Analysis and Visualization 233
 8.3.4.1 Novel data visualization techniques for “reduced” high-dimensional assay data in a clinical setting 234
 8.3.5 Multidisciplinary Teams and Educational Programs 235
8.4 G-DOC as an Example of a Tool to Support Systems Medicine 236
 8.4.1 G-DOC Systems Biology Analysis and Visualization 238
 8.4.2 My G-DOC 240
 8.4.3 G-DOC System Architecture 241
 8.4.4 A G-DOC Storyboard 242
Contents

8.4.5 G-DOC and Translational Research 248
8.4.6 G-DOC and Systems Medicine 249
8.4.7 G-DOC and the Clinical Practice of Systems Medicine 250
8.4.8 G-DOC: Comparison with Other Resources 250
8.4.9 Economics 251
8.4.10 Future Advances and Needs 251
8.4.11 Availability 252

9 The Tale of Underlying Biology: Functional Analysis of Multivariant Gene Classifiers (Gene Signatures) in the MAQCII Project 257
Marina Besserabova, Tatiana Nikolskaya, and Yuri Nikolsky
9.1 Introduction 258
9.2 Gene Signatures in the MAQCII Project 261
 9.2.1 Gene Signature Enrichment in Protein Function in an Endpoint-Specific Manner 264
 9.2.2 Network Topology of Gene Signature Unions 266
 9.2.3 Unions, Not Individual Signature, Enrichment in Endpoint-Relevant Pathways and Processes 270
 9.2.4 Similarity between Signatures at Gene Content and Functional Levels 273
 9.2.5 Signature Similarity Based on Gene Content 274
 9.2.6 Signature Similarity Based on Ontology Enrichment 275
 9.2.7 Correlation between Signature Similarity and Model Performance 277
 9.2.8 Common Regulators and “Effector” Genes for Different Signatures 277
 9.2.9 Interconnectivity between Signatures 280
 9.2.10 Summary on Analysis of MAQCII Signatures 281
9.3 Functional Descriptors as an Alternative to Gene Signatures 281

Theodosios Theodosiou, Nikos Darzentas, and Lefteris Angelis
10.1 Introduction 291
Contents

10.2 Text Mining Research in Biomedicine 293
10.3 Main Text Mining Techniques 294
10.3.1 Information Retrieval 294
10.3.2 Information Extraction 297
10.4 Text Preprocessing: The Vector Space Model 298
10.5 Statistical and Computational Methods in Text Mining 303
10.5.1 Discovering Correlations 305
10.5.2 Classification 306
10.5.3 Clustering 308
10.5.4 Graphical Analysis 309
10.6 Perspectives and Challenges 310

11 Systems Mapping: A Computational Tool for Personalized Medicine 321
Guifang Fu, Jingyuan Liu, Jiangtao Luo, Zhong Wang, Yaqun Wang, Ningtao Wang, and Rongling Wu
11.1 Introduction 322
11.2 Differential Equation Modeling of PK/PD Machineries 324
11.2.1 Pharmacokinetics 325
11.2.2 Pharmacodynamics 326
11.3 Systems Mapping: Model and Algorithm 326
11.3.1 Clinical Design 326
11.3.2 Likelihood and Estimation 327
11.3.3 Hypothesis 329
11.4 Computer Simulation 329
11.5 Discussion 336

12 From the Intersection of Pharmacology, Imaging, and Genetics to the Advancement of Personalized Medicine 341
Christina E. Pataky-Forsyth, Philip Gerretsen, and Bruce G. Pollock
12.1 Treatment Considerations 342
12.2 Metabolic Polymorphism 343
12.2.1 CYP2D6 344
12.2.2 CYP2C19 350
12.3 Polymorphism in Neurotransmitter Systems 352
12.3.1 Serotonin 352
12.3.2 Dopamine 355
12.4 Neuroimaging Markers of Psychiatry 357
12.4.1 Neuroimaging and Treatment Outcome 358
12.4.2 Neuroimaging and Genetic Polymorphism 360
12.5 Future Perspectives 363

13 Drug Response Heterogeneity and the Genetic Variability of Cytochrome P450–Metabolizing Enzymes 375
Shu-Feng Zhou and Kevin B. Sneed

13.1 Introduction 376
13.2 Polymorphisms of CYP2C9 and Clinical Impact 377
13.2.1 Substrate Specificity of CYP2C9 377
13.2.2 Alleles of CYP2C9, Ethnic Distribution, and Effect on Enzyme Activity 378
13.2.3 Anticoagulants 386
13.2.4 Anticonvulsant: Phenytoin 389
13.2.5 Angiotensin II Receptor Antagonists 390
13.2.6 Diuretic: Torasemide 393
13.2.7 NSAIDs 393
13.2.8 Statin: Fluvastatin 399
13.2.9 Sulfonylurea Hypoglycemic Agent 400
13.2.10 Opioid Analgesic: Ketobemidone 402
13.3 Polymorphismsof CYP2C19 and Clinical Impact 403
13.3.1 SubstrateSpecificity of CYP2C19 403
13.3.2 Alleles of CYP2C19 and Ethnic Distribution 403
13.3.3 Antiplatelet Agents: Ticlopidine, Clopidogrel, and Prasugrel 410
13.3.4 Barbiturates 412
13.3.5 Benzodiazepines 413
13.3.6 Nelfinavir 416
13.3.7 Phenytoin 417
13.3.8 Proguanil 417
13.3.9 Proton Pump Inhibitors 418
13.3.10 Selective Serotonin Reuptake Inhibitors 422
13.3.11 Tricyclic Antidepressants 423
13.3.12 Voriconazole 424
13.4 Polymorphisms of CYP2D6 and Clinical Impact 425
13.4.1 Human CYP2D Locus 425
13.4.2 Substrate Specificity of CYP2D6 427
13.4.3 Alleles of CYP2D6 and Effects on Enzyme Activity 430
13.4.4 Ethnic Differences in the Frequencies of CYP2D6 Alleles 448
13.4.5 Clinical Genotype-Phenotype Relationships of CYP2D6 and Impact on Pharmacotherapy 449
 13.4.5.1 Antidepressants 449
 13.4.5.2 Selective serotonin reuptake inhibitors 454
 13.4.5.3 Other antidepressants 456
 13.4.5.4 Antipsychotics 459
 13.4.5.5 Centrally acting cholinesterase inhibitors 464
 13.4.5.6 Drugs for senile dementia 467
 13.4.5.7 Antiarrhythmic drugs 467
 13.4.5.8 β-Adrenoceptor blockers 476
 13.4.5.9 Antiemetics 479
 13.4.5.10 Selective estrogen receptor modulators 480
 13.4.5.11 Opioids and opioid receptor antagonists 487
 13.4.5.12 H1 receptor antagonists 491
13.5 Conclusions and Future Perspectives 494

14 Molecular Biomarkers for Personalized Medicine 607
Huixiao Hong, Roger Perkins, Leming Shi, Hong Fang, Donna L. Mendrick, and Weida Tong

14.1 Introduction 607
14.2 Types of Molecular Biomarkers 611
 14.2.1 Genetic Biomarkers 611
 14.2.2 Epigenetic Biomarkers 613
 14.2.3 Transcriptomic Biomarkers 616
 14.2.4 Proteomic Biomarkers 618
 14.2.5 Metabolomic Biomarkers 620
14.3 Marketed Molecular Biomarkers for Personalized Medicine 621

14.4 Challenges and Issues of Molecular Biomarkers for Personalized Medicine 628
14.4.1 Biobanks 628
14.4.2 Technical Reliability 629
14.4.3 Biological Reliability 630
14.4.4 Regulatory Challenges 631
14.4.5 Bioinformatics 633
14.4.6 Statistics 634
14.4.7 Reimbursement 635

14.5 Future Perspective 636

15 Methodology to Enable Integration of Genomic Knowledge into Drug Development 645
Thomas W. Swanson, P. Anthony Akkari, Julian B. Arbuckle, Iris Grossman, Scott S. Sundseth, and Allen D. Roses

15.1 Introduction 645
15.2 Background 646
15.3 Pipeline Pharmacogenetics: Foundational Elements 648
15.3.1 Scientific Strategy 648
15.3.2 Pipeline Pharmacogenetics Sampling 650
15.3.2.1 Roadmap to achieving appropriate DNA sampling rates 651
15.3.3 Integrated Execution Methodology 654
15.4 Pipeline Pharmacogenetics Methodology Solution 658
15.4.1 The Pharmacogenetics Program Stages: I. Confirm, II. Integrate, and III. Implement and Refine 659
15.4.1.1 Program methodology, stage I: Confirm 660
15.4.1.2 Program methodology, stage II: Integrate 662
15.4.1.3 Program methodology, stage III: Implement and refine 663
15.4.2 The Pharmacogenetics Project Stages: I. Scope, II. Plan, III. Execute, IV. Interpret, and V. Close 664
15.4.2.1 Scope stage of the project methodology 667
15.4.2.2 Plan stage of the project methodology 667
15.4.2.3 Execute stage of the project methodology 668
15.4.2.4 Interpret stage of the project methodology 669
15.4.2.5 Close stage of the project methodology 669
15.5 Pipeline Pharmacogenetics: Application and Barriers 670
15.5.1 Organization-Wide and Clinical Team–Specific Resistance to Pipeline Pharmacogenetics 670
15.5.2 Perceived Barriers to Pipeline Pharmacogenetics 671
15.5.2.1 The scientific/statistical claims 671
15.5.2.2 Clinical trials’ operational claims 672
15.5.2.3 Clinical utility and value to practicing physician claims 673
15.5.2.4 The regulatory claims 675
15.5.2.5 The marketing claims 675
15.5.3 Pipeline Pharmacogenetics Methodology as a Solution to Discipline Integration Barriers 676
15.5.3.1 Communication of the pharmacogenetics results’ interpretation and recommendations reports 678
15.6 Pipeline Pharmacogenetics: Conclusions 680

16 Framework, Organization, and Applications of the Simcyp Population-Based Simulator to Support New Drug Development 685
Masoud Jamei, Karen Rowland Yeo, and Amin Rostami-Hodjegan
16.1 Introduction 686
16.2 The Bottom-Up Approach 691
Contents

16.3 The Platform Structure

16.3.1 Prediction of PK Properties

16.3.1.1 Determinants of oral drug absorption

16.3.1.2 Determinants of drug distribution throughout the body

16.3.1.3 Determinants of drug metabolism

16.3.1.4 Determinants of drug excretion

16.3.2 Prediction of PK Concentration–Time Profiles

16.3.2.1 PK/PD profiles in the Simulator

16.3.2.2 Differential equation solver

16.3.3 Bridging of Bottom-Up and Top-Down Algorithms

16.3.4 Outputs

16.4 Applications of the Simulator: Case Studies

16.5 Conclusions and Future Developments

17 Knowledge-Based Approaches in Pharmacovigilance: Lessons and Prospects for Personalized Medicine

Gunnar Declerck, Cédric Bousquet, Iulian Alecu, Agnès Lillo-Le Louët, and Marie-Christine Jaulent

17.1 Introduction

17.2 Knowledge-Based Approaches in Pharmacovigilance

17.2.1 Spontaneous Reporting for Collecting ADRs

17.2.2 MedDRA Terminological System for Adverse Event Coding

17.2.3 Statistical Signal Detection Tools

17.2.4 Knowledge-Based Approaches for Signal Detection

17.3 Toward an Ontology of ADR

17.3.1 Formal Definitions

17.3.2 First Version of ontoADR

17.3.3 Second Version of ontoADR

17.4 Relevance of Formal Semantics for Pharmacovigilance Signal Detection
18.9 Future Challenges of Economic Evaluations for Pharmacogenomic Interventions 803
18.10 Concluding Remarks 806

19 Pharmacogenomics: Ethical, Legal, and Social Issues 813
Yann Joly and Denise Avard
19.1 Introduction 813
19.2 The Ethics of Pharmacogenomics 817
 19.2.1 Hopes and Accomplishments 820
19.3 Pharmacogenomics: A Selective Review of Ethical Issues 821
 19.3.1 Informed Consent 821
 19.3.2 Confidentiality 823
 19.3.3 Clinical Trials and Genotyping 824
 19.3.4 Race and Ethnic Stratification 826
 19.3.5 Return of Results 828
 19.3.6 Pediatric Research 830
 19.3.7 Regulatory Approval Issues 831
 19.3.8 Professional Liability 833
 19.3.9 Pharmacogenomic Tests Sold Directly to Consumers over the Internet 834
19.4 Conclusion 837

20 Pharmacogenomics: Advancing Evidence-Based Personalized Medicine 845
Trina Huynh, Andrea C. Backes, Kelly C. Lee, Joseph D. Ma, and Grace M. Kuo
20.1 Introduction 845
20.2 Abacavir 846
 20.2.1 Background 846
 20.2.2 Gene/Allele of Interest 847
 20.2.3 Functional Effect of HLA-B*5701 847
 20.2.4 Population Prevalence of HLA-B*5701 847
 20.2.5 Clinical Relevance 847
 20.2.5.1 Efficacy 847
 20.2.5.2 Toxicity 848
 20.2.5.3 Dosing and drug selection 849
Contents

20.2.6 Genomic Tests 849
 20.2.6.1 Testing recommendations 849
20.2.7 Pharmacoeconomics 850

20.3 Trastuzumab 850
 20.3.1 Background 850
 20.3.2 Gene/Allele of Interest 851
 20.3.3 Functional Effects of HER2 Overexpression 851
 20.3.4 Population Prevalence of HER2 Overexpression 852
 20.3.5 Clinical Relevance
 20.3.5.1 Efficacy 852
 20.3.5.2 Toxicity 853
 20.3.5.3 Dosing and drug selection 854
 20.3.6 Genomic Tests
 20.3.6.1 Testing recommendations 855
 20.3.7 Pharmacoeconomics 855

20.4 Clopidogrel 856
 20.4.1 Background 856
 20.4.2 Gene/Allele of Interest 856
 20.4.3 Functional Effects of CYP2C19 857
 20.4.4 Population Prevalence of CYP2C19 858
 20.4.5 Clinical Relevance
 20.4.5.1 Efficacy 858
 20.4.5.2 Toxicity 859
 20.4.5.3 Dosing and drug selection 860
 20.4.6 Genomic Tests
 20.4.6.1 Testing recommendations 861
 20.4.7 Pharmacoeconomics 861

20.5 Codeine 862
 20.5.1 Background 862
 20.5.2 Gene/Allele of Interest 863
 20.5.3 Functional Effect of CYP2D6 863
 20.5.4 Population Prevalence of CYP2D6 863
 20.5.5 Clinical Relevance
 20.5.5.1 Efficacy 864
 20.5.5.2 Toxicity 865
 20.5.5.3 Dosing and drug selection 866
 20.5.6 Genomic Tests 867
20.5.6.1 Testing recommendations 867
20.5.7 Pharmacoeconomics 867
20.6 Warfarin 868
20.6.1 Background 868
20.6.2 Gene/Allele of Interest 868
20.6.3 Functional Effect of CYP2C9, VKORC1, and CYP4F2 869
20.6.4 Population Prevalence of CYP2C9, VKORC1, and CYP4F2 870
20.6.5 Clinical Relevance 870
20.6.5.1 Efficacy 870
20.6.5.2 Toxicity 871
20.6.5.3 Dosing and drug selection 871
20.6.6 Genomic Tests 873
20.6.6.1 Testing recommendations 873
20.6.7 Pharmacoeconomics 874
20.7 Conclusion 875

21 Advancement of Pharmacogenomics toward Pharmacotyping in Drug Prescription: Concepts, Challenges, and Perspectives for Personalized Medicine 893

Ioannis S. Vizirianakis

21.1 Introduction 893
21.2 Pharmacogenetics and Personalized Medicine: A Historical Perspective 895
21.3 Harnessing of Pharmacology and Toxicology Knowledge for Improving Drug Efficacy and Safety Profiles: The PTx Concept in Drug Prescription 900
21.4 Advancing of Clinical and Molecular Pharmacology: Establishment of Network and Systems Pharmacology 909
21.5 The Implementation of PGx in PD and PK Drug Processes 913
21.6 Empowering of the Scientific Borderlines between Nanomedicine and Personalized Medicine 917
21.7 Genomics, Nanotechnology, and Informatics Paving the Way for the Practical Utility of Personalized Medicine 920
21.7.1 Drug Efficacy Rates, Emergence of ADRs, and Cost-Effectiveness 921
21.7.2 Challenges for Personalized Medicine toward Education and Clinical Training of Health Care Practitioners 923

21.8 Pharmacotyping in Drug Prescription: A Conceptual Approach toward Minimizing the Incidence of Drug Interactions and Ensuring the Clinical Translation of Genotyping Data in Real Time 926
21.8.1 The Path for Pharmacogenomics and Personalized Medicine toward Enabling PTx in Drug Prescription: Challenges and Perspectives 929

22 Implementation of Pharmacogenetics in Evidence-Based Medicine: Toward Advancing Personalized Medicine 953
22.1 Introduction 954
22.2 Pharmacogenetics of Pharmacokinetic Characteristics of a Drug 956
22.3 Pharmacogenetics of a Metabolizing Enzyme Affecting Pharmacodynamic Characteristics of a Drug 957
22.4 Pharmacogenetics from Pharmacodynamic Characteristics of Cytostatics 958
22.5 The Contribution of Pharmacogenetics to Treatment Optimization for Clopidogrel 959
22.6 The Contribution of Pharmacogenetics to Treatment Optimization for Coumarines 961
22.7 The Contribution of Pharmacogenetics to Treatment Optimization for Proton Pump Inhibitors 962
22.8 Pharmacogenetics Applicable in Daily Practice 965
22.8.1 Introduction 965
22.8.2 Genotypes, Prevalences, and Allele Frequencies of CYP2C9 965
22.8.3 Genotypes, Prevalences, and Allele Frequencies of CYP2C19 966
22.8.4 Genotypes, Prevalences, and Allele Frequencies of CYP2D6 968
22.8.5 Genotypes, Prevalences, and Allele Frequencies of CYP3A5 970
22.8.6 Genotypes, Prevalences, and Allele Frequencies of TPMT 970
22.8.7 Genotypes, Prevalences, and Allele Frequencies of DPYD 972
22.8.8 Genotypes, Prevalences, and Allele Frequencies of VKORC1 974
22.8.9 Genotypes, Prevalences, and Allele Frequencies of UGT1A1 975
22.8.10 Genotypes, Prevalences, and Allele Frequencies of HLA-B 977
22.8.11 Genotypes, Prevalences, and Allele Frequencies of Factor V Leiden 978
22.8.12 Therapeutic (Dose) Recommendations Based on the Genotype/Phenotype 979
22.9 Concluding Remarks 979
22.10 Future Perspectives 998

23 Pharmacodynamics- and Pharmacogenetics-Guided Antiplatelet Therapy 1117
 Antonio Tello-Montoliu and Dominick J Angiolillo
 23.1 Introduction 1118
 23.2 Overview of Platelet Function and Genetic Testing 1119
 23.2.1 Platelet Function Testing 1119
 23.2.1.1 Platelet aggregometry 1119
 23.2.1.2 Vasodilator-stimulated phosphoprotein 1124
 23.2.1.3 VerifyNow™ 1124
 23.2.1.4 The Multiplate analyzer 1125
 23.2.2 Genetic Testing 1125
 23.2.3 Antiplatelet Drug Response: Definitions 1126
23.2.3.1 Aspirin response 1127
23.2.3.2 Clopidogrel response 1128
23.2.3.3 Dual antiplatelet drug response 1132
23.2.3.4 Hyper-responsiveness 1132

23.3 Causes of Antiplatelet Drug Variability 1135
 23.3.1 Genetic Factors 1135
 23.3.1.1 Aspirin 1135
 23.3.1.2 Clopidogrel 1137
 23.3.2 Cellular Factors 1143
 23.3.3 Clinical Factors 1144

23.4 Optimization of Antiplatelet Drug Therapy: Implications of Phenotypes and Genotypes 1145
 23.4.1 Increase of Antiplatelet Drug Dosing 1146
 23.4.2 Triple Antiplatelet Therapy 1148
 23.4.3 New Antiplatelet Drugs 1150

23.5 Conclusions and Perspectives 1152

24 Personalized Prognosis, Diagnosis and Therapy of Metabolic Diseases: Targets and Strategies 1171

Günter Müller

24.1 Pathophysiological Mechanisms 1172
 24.1.1 Diabetes 1172
 24.1.2 Obesity 1174
 24.1.3 Genome-Wide Association Studies 1175
 24.1.3.1 Diabetes 1176
 24.1.3.2 Obesity 1177
 24.1.4 Mutations and Polymorphisms 1178
 24.1.4.1 Diabetes 1179
 24.1.4.2 Obesity 1180
 24.1.5 Obesity as a Risk Factor for Metabolic Diseases 1181

24.2 Personalized Medicine 1184
 24.2.1 Personalized Diagnosis 1185
 24.2.1.1 Biomarkers 1187
 24.2.1.2 Bioimaging 1189
 24.2.2 Targets for Personalized Therapy 1189
 24.2.2.1 Energy uptake 1190
24.2.2.2 Low-grade systemic inflammation 1192
24.2.2.3 Energy expenditure 1196
24.2.3 Strategies for Personalized Therapy 1206
 24.2.3.1 Gene therapy and regenerative medicine 1207
 24.2.3.2 Chemicals 1208
 24.2.3.3 Protein therapeutics 1212
 24.2.3.4 Nucleic acid therapeutics 1225
24.3 Current Limitations and Future Prospects 1228

25 Toward Personalizing Stem Cell Therapeutic Potential: Challenges and Opportunities for Regenerative Medicine 1247
Philip K. Lim, Bobby Y. Reddy, and Pranela Rameshwar
25.1 Introduction 1247
25.2 Stem Cell Overview 1249
 25.2.1 MSCs: The Optimal Stem Cells? 1250
25.3 Immunoregulation by MSCs 1251
25.4 Autologous vs. Allogeneic Stem Cell Transplantation 1252
25.5 Graft vs. Host Disease and MSCs 1253
25.6 Microenvironments and Stem Cell Regulation 1255
 25.6.1 Small Signaling Molecules 1256
 25.6.2 microRNAs 1257
 25.6.3 Exosomes 1258
25.7 General Challenges to Personalized Stem Cell Therapy 1259
 25.7.1 Tumorgenic Potential of MSCs 1260
 25.7.2 Drawbacks in the Use of ESCs and iPSCs 1261
25.8 Future Outlook 1262
25.9 Future Perspectives 1263

26 Application of Population Pharmacokinetics for the Individualization of Drug Dosage Regimens 1271
Aristides Dokoumetzidis, Dimitra Nikopoulou, and Panos Macheras
26.1 Introduction 1271
26.2 Therapeutic Drug Monitoring: Dose Adjustment 1272
Contents

26.3 Quantification of Pharmacokinetic Information 1274
 26.3.1 Model-Independent Methods 1274
 26.3.2 Parametric Models 1275
26.4 Pharmacokinetic Parameter Estimation 1276
 26.4.1 Population Pharmacokinetics 1280
26.5 Bayesian Individualization 1286
26.6 Concluding Remarks 1290

27 Pharmacogenomics and Clinical Assessment of Drug-Induced Hepatotoxicity toward Improving Clinical Outcomes 1293
 Camilla Stephens, Maria Isabel Lucena, and Raúl J. Andrade
 27.1 Introduction 1295
 27.2 DILI Diagnosis 1297
 27.3 Pharmacogenomics in DILI 1300
 27.3.1 Phase I (Bioactivation) 1301
 27.3.1.1 CYP2C9 1302
 27.3.1.2 CYP2D6 1303
 27.3.1.3 CYP3A 1303
 27.3.2 Phase II (Detoxification) 1304
 27.3.2.1 NAT2 1304
 27.3.2.2 UGTs 1306
 27.3.2.3 GST1 1307
 27.3.2.4 SOD2 and GPX1 1308
 27.3.3 Phase III (Elimination) 1309
 27.3.3.1 The ABCB subfamily 1310
 27.3.3.2 The ABCC subfamily 1311
 27.3.4 Immune Related Genes 1313
 27.3.5 HLA Genotyping 1314
 27.4 Genome-Wide Association Studies in DILI 1316
 27.5 Future Perspectives 1324

28 Coriell Personalized Medicine Collaborative: Exploring the Utility of Personalized Medicine 1335
 28.1 Making a Case for Personalized Medicine 1335
28.1 From the Lab to the Clinic 1337
28.2 The Coriell Institute for Medical Research 1338
 28.2.1 The Coriell Personalized Medicine Collaborative 1339
28.3 How the CPMC Study Works: The Participant Experience 1341
 28.3.1 Eligibility, Informed Consent, and Saliva Collection 1342
 28.3.2 CPMC Web Portal and Account Activation 1343
 28.3.3 Health Questionnaires 1344
 28.3.4 Genetic Testing 1344
 28.3.5 Personalized Risk Reports 1345
 28.3.6 Genetic Counseling and Pharmacists 1346
 28.3.7 Outcomes Research 1346
28.4 Key Elements of the CPMC Research Study 1346
 28.4.1 Risk Reporting for Complex Disease and Drug Response 1348
 28.4.1.1 Statistical review and risk reporting 1349
 28.4.2 Importance of Nongenetic Risk Factors 1352
 28.4.2.1 Nongenetic CPMC risk results 1352
 28.4.3 External Advisory Boards 1353
 28.4.3.1 The informed cohort oversight board 1354
 28.4.3.2 The pharmacogenomics advisory group 1355
 28.4.4 A Forward-Thinking Model for Research Consent 1356
 28.4.5 Education 1357
 28.4.5.1 Medical professional education 1357
 28.4.5.2 Education of the public 1358
 28.4.6 A True Collaborative 1359
 28.4.6.1 Partners in the CPMC research study 1360
 28.4.7 Ancillary Studies 1361
 28.4.7.1 Motivations and perceptions 1362
 28.4.7.2 Mood disorders 1365
 28.4.7.3 Risk for obesity 1366
Contents

28.4.7.4 Interactive education 1367
28.4.7.5 Use of genetic counseling 1368

28.5 Ethical, Legal, and Social Issues in Personalized Medicine 1369
28.5.1 The Genetic Information Nondiscrimination Act 1369
28.5.2 Privacy and Confidentiality 1370
28.5.3 Certificate of Confidentiality 1371

28.6 Peer Response to the CPMC Study 1371

28.7 Moving Forward 1372
28.7.1 The Promises 1372
28.7.2 The Challenges 1373
28.7.2.1 Improving the reimbursement environment for personalized medicine 1374
28.7.2.2 Increasing funding, integration, and population diversity in personalized medicine 1375

29 Information-Based Medicine to Enable Better Diagnostic and Treatment Decisions in Routine Health Care 1381

IBM Institute for Business Value

29.1 The Need for Personalized Health Care 1381
29.1.1 Science of Health Promotion and Care Delivery 1383
29.1.2 Information and Knowledge: Key for a High-Performance Health Care System 1386

29.2 PHC Scope and Vision 1387
29.2.1 Delivering PHC 1389
29.2.1.1 Applying PHC to breast cancer 1393
29.2.2 PHC with and without “-omics” 1393
29.2.3 The Value of Information Technology–Enabled PHC 1397
29.2.4 Exceeding the Human Cognitive Capacity 1399
29.2.5 The Current State of HIT 1400
29.2.5.1 Issues beyond the scope of this chapter 1404

29.3 Toward a New HIT Environment 1404
29.3.1 Challenge 1: Lack of an Interoperable HIT Environment for Care Delivery and Research

29.3.1.1 The research layer 1405
29.3.1.2 The infrastructure layer 1407
29.3.1.3 The care delivery layer 1408
29.3.1.4 The administrative layer 1409

29.3.2 Challenge 2: Prevalence of Tightly Coupled Applications and Data 1410

29.3.3 Challenge 3: Inadequate Data and Knowledge Standards

29.3.3.1 Existing standards 1412

29.3.4 Challenge 4: Insufficient Analytics Capabilities

29.3.4.1 Descriptive analytics 1416
29.3.4.2 Predictive analytics 1416
29.3.4.3 Prescriptive analytics 1418
29.3.4.4 The future 1419

29.3.5 Challenge 5: Absence of a Clinical Decision-Making Foundation

29.3.5.1 Knowledge acquisition 1420
29.3.5.2 Knowledge management 1422
29.3.5.3 Knowledge incorporation 1422

29.4 Summary: Key Capabilities to Address HIT Challenges 1425

29.5 Recommendations for Stakeholders 1426

29.5.1 HITECH Act Funding for HIT 1426

29.6 Conclusion: The PHC Journey 1431

29.7 The Right Partner for a Changing World 1432

29.8 IBM Institute for Business Value 1432

30 Electronic Decision Support Systems for Prescribing: Challenges and Perspectives for Personalized Medicine 1439

Julia M. Langton and Sallie-Anne Pearson

30.1 Introduction 1439

30.2 Aims 1440

30.3 Electronic Decision Support Systems 1440
Contents

30.3.1 The Continuum of Electronic Decision Support for Prescribing 1441

30.3.2 Key Terms 1442

30.3.3 Electronic Decision Support Systems for Prescribing: What Does the Evidence Tell Us? 1443

30.3.3.1 Factors influencing the uptake of electronic decision support for prescribing 1444

30.3.3.2 Impact of electronic decision support systems on processes of care and patient outcomes 1446

30.4 Medical Oncology: Challenges and Perspectives of Personalized Medicine 1455

30.4.1 Electronic Decision Support in Medical Oncology 1456

30.4.2 Quality of Electronic Decision Support in Medical Oncology 1456

30.4.3 Barriers and Facilitators to Use of Electronic Decision Support Systems in Medical Oncology 1458

30.4.4 Impact on Processes of Care and Patient Outcomes 1463

30.5 Future Perspectives 1464

Index 1473
Preface

The response of an organism to drugs has been challenging scientists through the years, and it must be considered as one aspect of the overall responses that living species exert to different environmental impacts and stressors within an ever-changing environment. To this regard, our knowledge of illness etiology and drug actions in the body goes in parallel with the scientific advances focusing to elucidate mechanisms and processes that contribute to the existence of life itself. In this way, understanding the pathophysiology of disease phenotypes as well as deciphering the underlying pharmacological mechanisms have long been set as the primary goals to be achieved, maximizing benefits in medical and pharmacy practice. Moreover, maximum efficacy and safety upon drug delivery, implying the improvement of pharmacotherapy profiles, is a long-desirable target for drug administration and coincides chronologically with the establishment of pharmacology as a basic and clinical discipline. Especially, over the past 80 years, medical and pharmaceutical specialties were given the capacity to suitably adopt scientific advancements coming from various research areas, thus providing health care practitioners with the suitable skills and expertise to improve disease prognosis and diagnosis as well as drug delivery clinical outcomes. As an example, if the scientific achievements will be considered over this period for the drug discovery and development era, one can easily came to the conclusion that it has been mainly influenced by fundamental advances in chemistry, physiology, and pharmacology, whereas specific contributions occurred at various decades from disciplines as these were being expanded through the years. Such examples refer to breakthroughs from microbiology in the 1930s and 1940s, from biochemistry and enzymology in the 1950s and 1960s, and
from molecular biology and recombinant DNA (rDNA) technology from the middle of 1970s and onward.

Nowadays, advances in nanotechnology, genomic technologies, informatics, molecular biology and pharmacology have long held out the promise of transforming medical practice, drug development and delivery from a matter of serendipity to a rational pursuit grounded in a fundamental understanding of the mechanisms of life. As far as the drug-related research and clinical environment is concerned, pharmacogenomics revived pharmacogenetics and pharmacology research boundaries to keep pace with fast evolving life-imposed scientific advances. The application of pharmacogenomics focuses on the clinical translation of genomics data to predict and evaluate disease risk and progression, as well as the pharmacological response to drugs in individual patients or groups of patients. As a matter of fact, the clinically validated genomic knowledge of target receptors, ion channels, enzymes, or transporters could be an additional clinical factor in guiding personalized prescription of most, if not all, currently in practice, orally delivered drugs to achieve the best-possible efficacy and safety profiles. By definition, personalized medicine implies the management of a patient’s disease in terms of prognosis, diagnosis, and drug delivery to achieve therapy with the best-possible medical outcome for that individual. To this end, the concept of personalized medicine has emerged as the way by which a suitable infrastructure setting in research, clinics, education and regulation could be built to hasten the translational efficiency of genomic, molecular and technological advancements into the practice of medicine and pharmacy. The latter means that both clinical and research efforts focusing on those concepts might formulate and broaden the era of personalized medicine and could facilitate as well as accelerate its practical utility in the clinical settings. This is considered a very important aspect toward achieving major benefits for personalized medicine worldwide. Such an approach was further supported by the notion that the possibility of focusing on the development of “personalized medicines” for specific individual patients could hardly be attained in practice, since it represents a very difficult task to be affordably achieved in terms of existing regulatory drug development issues, world-broad clinical utility, and therapy costs.
Personalized medicine, although in its infancy, represents already the next evolutionary step in medicine and pharmacy by gaining acceptance as an independent area of research to join the gap as well as connect experimentally the interfaces between the clinical settings with health-related basic disciplines. Through the application in everyday clinical practice of personalized medicine concepts, the improvement of prognosis, diagnosis, and therapy outcomes can be achieved in an affordable way as well in real time by permitting the stratification of patients suffering the same complex illness (e.g., cancer, cardiovascular disorders). It is expected to revolutionize the whole health and pharmaceutical care environment by focusing on the individualization approach both in research and in everyday clinical practice. This refers, among others, to disease risk assessment, diagnosis profiles, and new drug development approaches in order for the clinical translation of genomics information to be more efficiently achieved, thus maximizing drug delivery and prescription worldwide.

Having this in mind, the organization of a multidisciplinary approach toward serving better the clinical exploitation of the knowledge achieved thus far from cutting-edge genomics, innovative bioinformatics, and frontline nanotechnological advancements seems reasonable and attainable. Furthermore, this direction might more affordably permit the application of personalized medicine concepts in routine health care as well as cultivate the functional merger and unification of these core research directions into a common ground of “communication research language” to achieve the desirable personalized medicine targets. For example, by strengthening the clinical benefits of genomic knowledge as well as applying informatics methodologies and nanotechnological procedures and putting in perspective their advancements that contribute to personalized medicine, such an idea is gaining practical utility in clinical practice and drug delivery in a way that it connects the outcomes with specific markers and gene expression signatures of prognostic, diagnostic, and even therapeutic value. To this end, practical clinical utility worldwide could be faster and more efficiently achieved. And more importantly, by fulfilling the needs of broader clinical utility for personalized medicine, this also coincides with the active participation of health care educators in
the advancements happening both in research and at the clinical level in order then to transfer their expertise and experience into future professionals through the creation of suitable education programs in medicine and pharmacy. Such direction is crucial, since the implementation of the curricula has to take into consideration the scientific approaches with practical clinical consequences in the profiles of individual patients for diagnosis and drug delivery outcomes.

Handbook of Personalized Medicine represents an effort to critically shape the era in which various advancements contributing to health care disciplines merge to formulate the structure needed for allowing personalized medicine concepts to emerge in everyday clinical practice. The latter implies that these advancements are clinically validated, getting practical utility and broad use, and meeting regulatory requirements, as well as receiving a final approval to enter health care. To achieve this goal, leading scientists in their areas of expertise with various scientific backgrounds have been invited to contribute. To this end, recent advancements in genomics and nanotechnology will be presented that create a fertile ground for pharmacogenomics and personalized medicine to advance prognosis and diagnosis profiles for specific groups or individual patients and move toward pharmacotyping in drug prescription, that is, the individualized specific drug and dosage scheme selection based on the patient’s clinical and genetic data. Within this frame, this book is unique in its structure by including issues related to nanosystems and nanodevices, innovative drug formulations and nanotheranostics, molecular imaging and signatures, translational nanomedicine and informatics, predictability of drug effect behavior, genetic etiology of drug response heterogeneity, pharmacogenetics-guided drug prescription, pharmacovigilance and regulatory aspects, ethical and cost-effectiveness consequences, personal genome analysis, pharmacogenomics knowledgebase, education issues, and information-based medicine, as well as, last but not least, a framework and infrastructure to support personalized medicine utility for everyday clinical practice. This multidisciplinary *Handbook of Personalized Medicine* is also unique in its concept by including and presenting selective cutting-edge technological advancements from genomics, pharmacology, nanotechnology, informatics, and statistics.
that focus on pharmacogenomics and personalized medicine and allow the practical utility of clinically relevant genomic knowledge to enter health and pharmacy care. The idea to present various topics addressing the practical utility of personalized medicine and pharmacogenomics in a feasible and cost-affordable manner for routine health care is also innovative for this book volume. The text, although organized in such a way that each chapter represents an independent area of research, simultaneously allows an easy manner for the reader to intercorrelate various subjects covered in separate chapters. I sincerely hope that the book will assist readers in understanding the multidisciplinary nature of the changes happening in health and pharmaceutical care sectors and also to enrich their knowledge and their own perspectives on how genomics, informatics, pharmacology, and nanotechnology affect health-related professions to better adjust themselves in the new setting.

From the beginning and upon completion of this volume, new scientific achievements have stressed toward the empowerment of personalized medicine decisions by working and building a more multidisciplinary infrastructure in research and clinics. It is, for example, very interesting to note the vast load of human and other complex genomes functional data published in September 2012 from the ENCODE Project Consortium (The Encyclopedia of DNA Elements; ENCODE) that provides new insights into genetic variability patterns seen in individuals and populations. As is pointed out, many previously clinically validated DNA variants are located within or very near to intergenic regions and other noncoding functional DNA elements, thus providing new ways to clinically translate genomic information by linking specific genetic polymorphisms and disease etiology and progression profiles. Such new genetic information impinges on the regulation of complex mechanisms involved in human genome function, which, in turn, may contribute to molecular pathophysiology mechanisms. The latter stressfully points toward a more multidisciplinary effort for a practical clinical utility infrastructure in the era of personalised medicine for the benefit of society and individual patients worldwide. And more importantly, as recently published, the application of an integrative personal “omics” profile analysis
that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual has revealed the dynamics of this approach toward achieving personalized medicine decisions in clinical practice.

Last, but not least, the dynamic scientific environment that already exists in the era of nanotechnology and genomics with the potential to affect health care and drug delivery decisions needs more collaborative multidisciplinary efforts to make practical clinical utility of personalized medicine a maximum success. As a matter of fact, by crossing the borderlines of genomics with nanotechnology a fertile ground can be created to lead to the advent of "personalised nanomedicine" as a new discipline to enforce individualized therapeutic decisions with maximum safety and efficacy. To this end, a theme issue on "personalized nanomedicine" in the journal *Advanced Drug Delivery Reviews* has been recently coedited (October 2012) to define and exemplify that necessity in both research and clinical settings. The interested reader can follow such referred theme issues for further information and consideration.

I feel so deeply grateful, and I express my sincere thanks to all authors who contributed to this volume by taking time from their busy schedule, as well as presented their work and provided their personal perspectives on the concept of personalized medicine, thus making the initial multidisciplinary approach a reality and get its sense in the book.

Special thanks are also expressed to the Pan Stanford Publishing staff for their kind help as well as their work to see this volume being completed.

I cordially express my gratitude to my family members for their patience in all stages of this project, as well as for their continuous encouragement and the creation of such a supportive and creative environment that make this work finalized and complete.

Ioannis S. Vizirianakis
Thessaloniki, Autumn 2013