Index of Names
(Devices, Machines, and Robots)

AbioCor Implantable Replacement Heart 243
accelerometer 89, 90
Active Ankle Foot Orthosis (AFO),
MIT Biomechatronics group 250
Adaptive knee, Blatchfords 231
Agility knee, Freedom 231
AIBO, SONY 209
aircraft, airplane, plane, glider
flapping wing 152
static wing 152
Wright brothers 6
Lilienthal brothers 147
apparatus for muscles studies, MIT
Biomechatronics group 39
artificial insect, Marey 13
artificial lung, Case Western
University 245
artificial muscle
cable driven 260, 261
electroactive polymers (EAPs)
ionic 65, 66
 electronic 65, 66
 McKibben 58, 59
pneumatic (PAM) 58
shape-memory alloy (SMA) or
smart metal, muscle wire
66, 67
ASIMO, HONDA 208
Atlas, Boston Dynamics 201
Automated Endoscopic System
for Optimal Positioning
(AESOP) 284
automobile engine 55, 301
AutoSyringe, Kamen 238
Baxter, Rethink Robotics 26
Belgrade Hand, Tomovic and Rakic
(the first robotic five-fingered hand) 27
Benz Velo (the first mass marketed
car) 56
Berkeley Lower Extremity
Exoskeleton (BLEEX), UC
Berkeley 252
BigDog, Boston Dynamics 201,
211–213
Big Muskie (the biggest legged
locomotion machine) 197
BioLung, Michigan Critical Care
Consultants (MC3) 245,
246
Bionic ankle–foot prosthesis, MIT
Biomechatronics group 236
BIPER-1, 2, 3, 4, and 5, University
of Tokyo 203
blood pump
roller or peristaltic 287
centrifugal 287
BLR-G1 and BLR-G2, Gify
University 204
cardiopulmonary bypass (CPB)
machine 286, 287
Cheetah, Boston Dynamics 201,
213
chronophotographic gun, Marey
11
C-Leg, Otto Bock 230, 231
cranes 59
combustion engine
external 51, 52, 53
internal 33, 51, 54
Otto’s engine, compressed
charge 55
computed tomography (CT scan) 96
computed axial tomography (CAT scan) 96
CT X-ray 96
cyliners
 hydraulic 59
 tie rod–style 60
 welded body-style 60
 pneumatic 57
da Vinci Surgical System, Intuitive Surgical Inc. 279, 280, 284, 285
dynamo, Edison 17
electromyograph 94
Elmer and Elsie, Walter (the first autonomous robots) 25
encoders
 absolute 81
 angular 81
 incremental 81
 linear 80
 magnetic 80
 mechanical 81
 photosensitive 81
end-effector 57, 278, 283, 307, 308
excavators 59
exoskeleton
 Argo Medical Technologies 255
 Cyberdyne 254, 255
 Georgia Institute of Technology 259
 MIT 251
 Raytheon 254
 Sarcos 252
 UC Berkeley 252
 University of Delaware 260
E1, E2, E3, E4, E5, and E6, HONDA 206
flex sensors 82
flywheel 166, 167, 172
force-plate 15
fuses, Edison 17
F-4 Phantom plane 130
Geminoid F, Osaka University, ATR and Kokoro 290, 291
Gramme machine (the first industrial electric motor) 61, 62
gyroscope 90, 197, 263
Hall effect sensor 88, 89, 92
HAL and HAL-5, Cyberdyne 255
harmonic drive 299, 300
hearing aids
 non-invasive
 Behind The Ear (BTE) 248
 body worn vibro-tactile
 Aid (VTA) 248
 In The Canal (ITC) 248
 In The Ear (ITE) 248
 invasive (implants)
 Baha® System 248, 249
 cochlear implant 248, 249
heart–lung machine 286
heart valves
 mechanical 241
 caged-ball 242
 tilting-disk 242
 bileaflet 242
 tissue 241
 3f® Aortic Bioprosthesis, Medtronic 242
 Hancock II heart valve 242
heat engine 51, 53, 301
helicopter 5, 151
hexapod, Ohio State University (OSU), McGhee 197, 198
Hippomobile, Lenoir (the first automobile) 55
HOAP-1, 2, and 3, Fujitsu 210
Index of Names (Devices, Machines, and Robots)

HRP-1, HRP-2P, HRP-2 Promet, and HRP-4C, Kawada Industries and AIST 209

Human Load Carrier (HULC), Kazerooni 252

humanoid robot 108, 155, 206, 210, 288

hydroelectric power plant, Tesla 20

iBot, Johnson & Johnson 263

iBot Mobility System, Kamen 238

i-LIMB, Touch Bionics 239

induction motor, Tesla 20

industrial robotic arm 26

inertial measurement unit (IMU) 90

instrumented robotic mannequin 288

Kinetograph, Edison 17

Kinetoscope, Edison 17

KUMO-I, Hirose 198

laser rangefinder 82, 84, 266

lidar 3D scanners 83

light bulb, Edison 17

light sockets with on-off switches, Edison 17

load cells
 capacitive 92
 hydraulic 92
 piezoelectric 92
 strain gauge based 93

Lokomat, Hocoma AG 256

LokomatPro with Pediatric Orthoses, Hocoma AG 256

LS3, Boston Dynamics 201

Luke Arm, DEKA 237, 238

Machina docilis, Walter 25

Machina speculatrix, Walter (the first autonomous robots) 25

magnetic resonance imaging (MRI) 278

magnetorheological breaks 232, 234

manipulator 279, 307

McKibben artificial muscles 58, 59

mechanical horse
 Cleveland, Ohio 196
 Spezia, Italy 195

MedSim-Eagle Patient Simulator 289

micro electro-mechanical systems (MEMS) 89

MIT Manus, Inmotion Robotics for Rehabilitation USA 256

Mocher Wagen, Mavag-Fiat 195

Mona, Green 279

motion capture (MOCAP) system 84, 85, 86

motor
 electric 51, 61
 AC 62, 63
 brush 62
 brush-commutated DC motors 62
 brushless 64
 DC 64
 hydraulic 51, 57
 pneumatic 51, 57
 servo motor 64
 stepper motor or step motor 64
 piezoelectric motor or piezo motor 64
 voice coil motor 64

mPower 1000, Myomo USA 258

M2, MIT Leg Lab 206

One-To-Many (OTM)
 ExoMusculature, WPI Popovic Labs 148, 261
ornithopter
 Festo 146
 Hargrave 147
 Lippish 147
 MIT 146
 Musters 146
 Schmid 147
 Trouvé 145
 University of Toronto 147
 von Holst 146
 WPI Popovic Labs 148

oxygenator
 bubble or “direct contact” 286
 membrane 286

PALRO, Fujisoft 210
PETMAN, Boston Dynamics 201, 214
Phoenix, MIT 147
Phony Pony, McGhee (the first computer-controlled legged robot) 197
planar one-legged hopping machine, Matsuoka 200
Planar One-Leg Hopper, CMU, Raibert 199
pneumatic artificial muscles (PAM) 58
pneumatic switch, Marey 14
Pneu-WREX, UC Irvine 258
positron emission tomography (PET) 95, 96
posturograph 165
potentiometers or pots 81
PowerFoot One, iWalk 235
pressure sensors arrays 92
PROBOT, Imperial College 283
Projectoscope, Edison 17
Puma robot arm, Unimate 282
PV-II, Hirose 198
P1, P2, P3, and P4, HONDA 206
QRIO, SONY 209, 210

radar 83, 84
radio, Marconi and Tesla 18, 20, 21
Rancho Arm, Rancho Los Amigos Hospital 28
ReWalk, Argo Medical Technologies 255
Rheo Knee, Ossur 230, 233
rheostats or variable resistors 81
RHex, Boston Dynamics 201
RoboDoc, Integrated Surgical Systems Inc. 278, 283, 284
Robot for Interactive Body Assistance (RIBA), RIKEN-TRI RTC 291
robotic ankle foot, MIT Biomechatronics group 235
rockets 159
Roomba vacuum cleaner, iRobot 26
rubbertuators 58

SDR-4X, SONY 209
Segway Personal Transporter, Kamen 90
series elastic actuator (SEA), MIT Leg lab 204, 251
shape-sensing optical sensors, LUNA 84
sieve electrode
 neural 323
Simroid robot, Nippon Medical School 289
six-legged hydraulic walker,
 Sutherland 201
Smartbird, Festo 146
SmartHand Prosthesis, Scuola Superiore Sant’Anna 240
Spring Turkey, MIT Leg Lab 204, 205
Spring Flamingo, MIT Leg Lab 205
sonar 84
steam
 engines 53
 king 194
 Man 193
 Wagon 194
Stirling engines
 alpha-type 53
 beta-type 53
strain gauge
 Simmons 91
strain wave gearing (SWG) 299, 300
supercomputer 118, 323
 Cray Jaguar 118, 323
 Cray Titan 118, 323
 Fujitsu K computer 118, 323
 IBM Roadrunner 118, 323
 NUDT Tianhe 2 118, 323
 Tianhe-IA 118, 323
surgical robots 277, 278
SynCardia temporary CardioWest Total Artificial Heart 243
tactel 92
tactile sensors 198, 199, 292
Tek Robotic Mobilization Device (RMD), Hacikadiroglu 264
teleautomaton, Tesla (the first robot) 18, 20
teleoperated robot boat, Tesla (the first robot) 19
telescoping legs 196, 199
Tentacle Arm, Minsky 28, 29
Tesla coil 20
Tesla’s turbines 22
tin-foil phonograph, Edison 15
tortoise robots, Walter (the first autonomous robots) 25
transducer 88, 92, 93, 226
transformer, Tesla 20
transistor 110
Troody, MIT Leg Lab/
 Biomechatronics Group 207
ultrasonography 278
Unimate industrial arm, Unimation (the first industrial robotic arm) 27
unmanned aerial vehicles (UAVs) 167
Urban Hopper, Boston Dynamics 201
vertical takeoff aircraft, Tesla 22
Vitascope, Edison 17
WABOT 1, Kato (the first computer-controlled bipedal robot) 198
walking machine, Hutchinson and Smith 195
Wheatstone bridge 92
wheelchair
 iBot, Johnson & Johnson 263
 Tek RMD 264
 Saitama University 265
 MIT, Roy and Teller 266
 part of the UNR project, ATR 267
winches 59
wind-up toys 51
Xbox 360 with Kinect 87
XOS, Raytheon 254
XOS-2, Raytheon 254
X-ray computed tomography 96
Zeus system, Computer Motion 285
acetylcholine, neurotransmitter 49
actin–myosin binding sites 36
action potential(s) 45, 113, 116
adenosine diphosphate (ADP) 50, 298,
adenosine triphosphate (ATP) 44, 50, 298
amphibians 121
amputation
bilateral 220
congenital
quadrilateral 220
transfemoral, also above the knee (AK) 220
transhumeral, also above the elbow (AE) 220
transradial, also below the elbow (BE) 220
transtibial, also below the knee (BK) 220
traumatic
triliteral 220
unilateral 220
amoeba 44
anterior–posterior direction 170
aorta 241–243, 286
arachnid
arachnid gait 179, 180
scorpion(s) 179
spider(s)
 hunting spider (Cupiennius salei) 179
daddy-longlegs spider 198
arm(s)
elbow 220, 239, 310
fingertip 79, 280
forearm 239
forequarter 222
grip 198, 238
hand
tremor, hand 278
index finger 239
palm 62, 299
shoulder 167, 178, 197, 237, 260, 262, 265, 306, 310
swinging, arm 222
thumb 62, 239
upper-arm 262
wrist 247, 299, 307, 309
arrhythmias 289
axon(s)
demyelination of axon 114
depolarization, axon 49
efferent axons 113
myelinated axons 116
terminals, axon 49
bacterium
cell membrane 153
flagellum 153
prokaryotic flagellate
Helicobacter pylori 127
swimming bacterium 140
bird(s)
duck 139
flapping bird 20
great bustard 137
hummingbird 304, 305
ostrich 177
blood
cell 242
clot 242
circulation 7, 11, 319
deoxygenated 286
Index of Terms (Biological Systems)

pressure 290
red cell 242
regurgitation (backward blood flow) 241
stenosis (impeded blood forward flow) 241
thrombus-vulnerable 244
vessels 7, 41, 117, 122, 244

bone(s)
femur 283
humerus 34

bony prominences 319
bony landmarks 85
greater tubercle 262, 307

brain
brain’s immune cell(s) 117
forebrain
cerebrum
left and right hemispheres 121
corpus callosum 121
cerebral cortex, human 121
occipital lobe 121
temporal lobe 121
parietal lobe 121
frontal lobe 122
diencephalon
thalamus 120
hypothalamus 120
hindbrain
cerebellum 122
medulla oblongata 122
pons 122
midbrain 120, 122
tumor 283
brainstem 113, 116, 117

cell(s)
eukaryotic (have a nucleus)
cells 127
eukaryotic flagellate cell 127
mammalian sperm cell 127
prokaryotic (lack a nucleus)
cells 127
prokaryotic flagellate bacterium 127
Helicobacter pylori 127
central nervous system (CNS)
brain 113
spinal cord 113
retina 113
central pattern generators (CPGs) 119
cerebral palsy 85, 256, 319
chambered nautilus 140
chemoreceptors
circulatory system 80
smell or olfactory 78
taste or the gustatory system
Type I (sweet) 77
Type II (bitter) 77
Cochlea 76, 246, 248, 249, 321
colic pain 80
collagen fibers 41
contractile proteins 41
copepod (*copepoda*) 139
cortical reorganization 240
crab(s) 141
cytoplasm 42
decubitus ulcers (also pressure ulcers or bedsores) 319, 320
dendrite(s) 113, 114
dermis 78, 79
diabetes 220, 221
digestive system
larynx 78
upper esophagus 78
dorsal position 137
dorsum 299
drop-foot 251
drop-foot

ear canal 246, 249
eardrum 76, 246
endocrine functions 120
ephaptic coupling 118, 119
excitation–contraction coupling 47, 49
exteroception 75, 212
eye 7, 20, 40, 75, 120, 122, 177, 208, 219, 240, 289
eyeball 76
feathers 147, 150
fetus in utero 5
fin(s)
caudal 141
median 141
pectoral 141
fish
ray-finned fish (Actinopterygii) 137
swim bladder (“gas bladder”) 137
tuna 139
shark 141
stinger ray (also stingray) 141
undulating fish 143
zebrafish 80
flagellum 127, 153
foot, feet
contact with the ground, foot 14
frogs
African clawed frogs 80
gait(s)
arachnid gait (8-legged) 179, 180
asymmetric gaits
canter 176, 181, 310, 311
transverse/rotary gallop 176, 181–184, 310, 311
bound 176, 311
prone 176, 311
quadruped’s gaits (4-legged)
“ambling” gaits 183
canter 181
gallop
double suspension 183, 184
single suspension 183, 184
pace 182
trot 176, 181, 310, 311
walk 182–184
ripple gait (6-legged) 180
symmetric running gait (a trot or pace) 176, 311
tetrapod gait (8-legged) 179
tripod gait (6-legged) 179, 202
wave gait (6-legged) 180
ganglion, ganglia
cluster(s) of neurons in periphery 113
gastrointestinal tract 41, 80
glia, glial cell(s)
astrocytes 117
microglia 117
oligodendrocytes 117
Schwann cells 114
glucose uptake 96
gray matter 113, 121,
head 44, 47–49, 51, 60, 77, 113, 206, 209, 290
heart
beat(s) 11, 41, 240
bypass 285
right and left atria 240
right and left ventricles 240
valve(s)
human heart valves
aortic valve 240
mitral valve 240
pulmonic valve 240
tricuspid valve 240
hemiplegic 319
homeostasis 117, 212,
homeostatic center 120
hooves 13
human
anatomy 5, 77, 230,
biceps 44, 49, 103, 298
body 5, 7, 9, 20, 85, 103, 112,
 221, 240, 249, 250, 259,
 261
corpses 5
lungs 9, 80, 240, 241, 244
lymphatic system 7
movements
foot dorsiflexion 299
palmarflexion 299
plantarflexion 299
olfactory receptor cells 78
organism, human 20
proprioceptor 80
proportions 6
reflexes 166
skeletal muscles 34, 40, 41,
 93, 103, 117, 172
tongue 77, 78
walk
 double-support phase
 163, 171, 317
 single-support phase 163,
 171, 203
stance and swing leg 167,
 212
inner ear 76, 77, 80, 246, 249
insect(s)
cockroach (Periplaneta
 americana), also waterbug
 177, 310
fruit flies 80
large dragonfly 139
integrated circulation system 33
interoception 75, 80
invertebrate larva 139
isometric 37, 39
isotonic 37, 39, 298
jellyfish 140
joint(s) 2, 9, 28, 34, 40, 41, 87, 93,
 109, 111, 156, 157, 172,
 196, 197, 204, 206, 212,
 221, 232, 233, 235, 249,
 250, 251, 254, 255, 256,
 258, 259, 260, 262, 281
kinesthesia 80
lamellar (or Pacinian) corpuscles 79
laparoscopic cholecystectomy, or
 gall bladder excisions 277
leg(s)
 ankle 204, 212, 224,
 234–236, 250, 251, 314,
 316, 318
 big toe 238
foot, feet 14, 15, 155, 160,
 166, 167, 170, 179, 181,
 183, 184, 208, 211, 212,
 232, 235, 236, 250, 279,
 299, 311, 312, 315, 316
forefoot 236
heel 163, 236
hip(s) 199, 204, 206, 212,
 256, 283, 284, 314, 316,
 318
knee 197, 204, 206, 208, 212,
 220, 224, 230–233, 235,
 236, 251, 256, 314, 316,
 318, 321
shank(s) 236
shin 299, 316,
thigh(s) 196, 316
toe(s) 163, 238
ligament(s) 172
liver 7
locomotion
 aerial 303
 gliding 143, 147, 150
 flapping
 wing(s) flapping 139, 142, 143, 145, 148, 149, 152, 304
 hovering 146–149, 152
 parachuting 143
 soaring 143
 flock formation 144
aquatic 140
 appendicular locomotion 141
 axial locomotion 141
 flagellar rotation 143
 recoil locomotion 140
 school formation 144
swimming
 body and/or caudal fin
 (BCF) locomotion 141
 median and/or paired fin (MPF) locomotion 141
terrestrial
 legged locomotion 169, 173, 174, 176
 walking
 double-support phase 163, 171, 317
 single-support phase 163, 171, 203
 arm(s) swinging 222
 running
 aerial phase 174
 hopping 200, 201
 crawling 199
 slithering 199
lung
 alveoli 244
 bronchi, bronchioles 244
 capillaries 244
 windpipe (trachea) 244
mammal(s)
 bear(s) 5
 blue whale (Balaenoptera musculus) 138
 cat(s)
 cheetah (Acinonyx jubatus) 153, 176
 cow(s) 5, 242
 dog(s) 78, 174, 181, 183, 184
 elephant(s)
 African elephant(s) 178
giraffe (Giraffa camelopardalis) 178
 horse(s)
 heart, horse 242
 galloping horse(s) 13
 large whale 139
 monkey(s) 5
 mule 211
 pig
 heart, pig 242
 sheep 246
 rabbit 44
mechanoreceptors
 hair cells 76, 246
 hearing or audition 76
 vestibular 77
 stretch receptors
 pulmonary (in the lungs) 80
 stretch receptors in the gastrointestinal tract 80
 medio-lateral direction 170
metabolic activity 96
metabolic energy 233, 314
middle ear 76, 246, 249
motor
 end plate membrane
 (connecting sarcolemma with axon) 49
 fibers 7
 neuron 37, 113, 115–117, 120
twitch, motor unit 37
multiple sclerosis 114, 256

muscle(s)
active force 36
agonist and antagonist 3
biceps brachii 35, 49, 103, 298
contraction 37, 45, 46, 48, 49, 51, 95
deltoid 34, 262, 307
extensor digitorum longus 299
extensor hallucis longus 299
fibrers
extrafusal muscle fibers 116
intrafusal muscle fibers 116
flexor muscle (of the human upper arm) 51
frog’s sartorius muscle 51
Hill’s muscle model 37, 39
passive force 35, 36
peroneus tertius 299
production of heat and mechanical work 37
recruitment 34, 103, 104
scale invariance 33
spindle(s) 116, 117
stress–elongation 35
tension–length 35
tibialis anterior 299
types
 cardiac 41
 smooth 41
 striated 40
musculoskeletal 10, 172
myofibrils 42, 44
myofilaments 42, 44, 51
myosin
cross-bridges 46, 50, 51
globular head 44
head swivel, myosin 298
long, fibrous tail, myosin 44
thick filament 42, 47, 51
two heads 47

nematode worms 80

nerve(s)
action potentials, nerve 45
afferent nerve 113
auditory nerve
Type I or cochlear neurons 76
vestibular neurons 77
cranial nerve
 facial 78
glossopharyngeal 78
vagus 78
efferent nerve 113
enclosed, cable-like bundle of axons in the PNS 113
motor nerve 49
mixed nerve 113
nerve–muscle grafts 239
optic nerve 76
sensory nerve 3
spinal nerve 113
neuromuscular junction (synapse) 49
neuron(s)
 alpha motor (α-MNs) 116, 117
 cluster of neurons in CNS (nucleus) 113
 cluster of neurons in PNS (ganglion) 113
doctrine, neuron 112
gamma motor neuron, gamma motoneurons (γ-motoneurons) 116, 117
olfactory sensory neurons 78
neuronal membrane 116
neurotransmission 115–117
nociceptors (pain nerve endings) 79
nociception (perception of pain) 79
nodes of Ranvier 114
nucleus
 cluster of neurons in CNS 113
olfactory epithelium 78
osseointegration 229, 320
ossicles, also tiny bones 246
osteoarthritis 284
Pacinian corpuscles 79
papillae
 circumvallate 77, 78
 foliate 78
 fungiform 78
parallel and pennate arrangement 42
Parkinson’s disease 256
pelvis and abdomen 170
peripheral arterial disease 220
peripheral nervous system (PNS) or periphery
 ganglia 113
 sensory neurons 113
photoreceptors (sight or vision)
 cones, color photoreceptors 75
 rods, brightness
 photoreceptors 75
pineal gland (pineal body, epiphysis cerebri, epiphysis, conarium, “third eye”) 7, 8, 122
posture
 balance, postural 159, 167
 crouch 264
 stand 177, 178, 207, 209, 255
 upright position 263
proprioception 75, 80, 104, 212, 226
prostatectomy, prostatectomies 277, 286
prostatic surgery 283
proximal and distal insertion 262, 307
pterosaurs 138
pulmonary
 pulmonary artery 241
 pulmonary vein 241
regulatory protein complex 46
reptiles 121
respiration
 respiratory rate control system 80
retina 75, 76, 113
saltation 114
sarcolemma 49
sarcomere(s)
 A band 43, 46
 H band 43
 I band 43, 46
 Z disc or Z line 43
sarcoplasmic reticulum (SR) 47
scoliosis 222
sea turtle 141
sex organs 5
skeletal strains 222
skeleton 5, 85, 250
skull 119, 249
sliding filament theory 44–46
soma 114
spinal cord injuries (SCI) 319
spinal rotation 222
stroke 51, 54, 56, 122, 147, 149, 150, 256, 258, 262, 319
synapse(s) 49, 115, 117–119, 323
synaptic connections 118, 323
synaptic transmission 115
targeted reinnervation 239
taste buds 77
tears 7
tendon(s)
 tendon–bone muscle attachment 34
tetanic contraction (tetanized state, maximal contraction) 37
thermoreceptors 79
thin filaments
actin 46
tropomyosin 46
troponin 46
troponin-T 47
troponin-C 47
troponin-I 47
thorax 170
thrombus 242, 244
tissue(s)
elasticity 9
resistance 278
tongue 78
torso 256
tortoises 25
total hip arthroplasty 283
touch or somatic sense receptors 78
tracts
analogous to nerves, in the CNS 113
traumatic brain injury (TBI) 256, 319
transverse tubules 50
urchin sperm 139
vascular
vascular disease 220, 221
vena cava
interior vena cava 286
superior vena cava 241, 286
vertebrates 78, 113, 114
walk
level walking 14
double-support phase 163, 171, 317
single-support phase 163, 171, 203
stance and swing leg 167, 212
stride 174, 181, 197, 224, 233
white matter 113
Index of Terms (Other)

About the Movement of Animals 2
acceleration 77, 89, 90, 103, 128, 129, 135, 156, 157, 159, 212, 304, 310, 315
adaptable stiffness 34
adiabatic processes 51
agent(s) 109
airfoil 140, 151, 152
allometric invariance 174
alternating current (AC) 20
aluminum 229, 260
amazing robot 263
angular momentum 90, 109, 162, 169, 170–172, 204, 222
anticoagulant drugs 242
Archimedes’ lever principle 3
Archimedes’ principle of buoyancy 128
Argo Medical Technologies 255
artificial intelligence (AI) 28, 109, 112
ATR Intelligent Robotics
and Communication Laboratories 266, 290
audible 76, 223, 246, 247
austenite 66, 67
backlash 299
bandwidth 204, 206, 279, 297
base of support 162, 163
battery, batteries 25, 33, 57, 105, 196, 209, 212, 222–224, 232, 236, 237, 244, 252, 260, 303, 305
Bedford College London 45
Bellman’s curse of
dimensionality 107
Bernoulli’s principle 129
Biodesigns Inc. 229
Biomech Designs 232
Biomech Engineering 232
Blatchfords 231
Boston Dynamics 201, 211, 213, 214
Boston University School of
Medicine 24
boundary condition 110, 111
brace(s) 230, 256, 258, 260–262
Brandeis University 45
Bridgestone rubber company 58
Brownian machine 321, 322
Bucyrus–Erie Co. 197
cable tension 262, 299, 306, 307
calculus of variations 110
California Institute of Technology (Caltech) 91, 203
Cambridge University 7
capacitor 66, 92
carbon nanotubes 65
Carnegie Melon University, or CMU 108
Carnot cycle 51, 52, 302
Case Western University 244, 245
center of mass, also CM or CoM 156, 169, 172, 174, 311, 312, 315
center of pressure, also CP or CoP 92, 155, 170, 312, 315, 317
center of rotation 306
Centre for Automation and
Robotics UPM–CSIC,
Madrid, Spain 262
centrifuge 288
centroidal moment pivot (CMP) 161, 162, 166, 167
ceramic 65
chaotic 130
characteristic linear dimension 136
chemical energy 45, 52
chromium 300
Chrysler 27
CM ground projection 162, 211
coating surface(s) 66
coefficient of friction 224, 311
College de France 11
Columbia University 15, 260
compliance 198
Computer Motion Inc. 285
conductive polymers 65
conductor 21, 61, 62, 91
contact surface 92, 155, 158, 160–162
continuity equation 136
control
control goal 104, 106, 107, 109
control loop 104
convex hull 160
copper
 copper–aluminium–nickel alloys 67
 copper–zinc–aluminium–nickel alloys 67
cosmetic 223
cost function 104, 108, 110
Coulomb force 88
Cretaceous period 138
current 16, 17, 20, 54, 61, 62, 66, 67, 87, 88, 212, 256, 300, 301, 303, 305
cyberdyne 254, 255
dance 209, 210
DARPA 237, 252
Darwin’s evolution of species 109
data explained 108
Deka 229, 237, 238
De Motu Animalium I and De Motu Animalium II 8
De Motu Musculorum 3
density 33, 57, 59, 67, 130, 135–137, 149, 224, 261, 300, 302–304, 320, 321
Department of Physiology at University College in London 45
deviatoric 135
die cast, die casting 27, 229
dielectric elastomers 66
differential and integral calculus 128
dimensionless 136, 137, 303
direct current (DC) 16, 20, 54, 62, 256
displacement(s) 15, 53, 59, 65, 67, 82, 140, 174, 202
distance 21, 58, 82, 86, 134, 150, 158, 171, 234, 244, 262, 278, 298, 305, 307, 309–311, 314, 321, 322
disturbance 200, 214, 224
drag
 drag coefficient 130, 149
 drag equation 130
drift 82
durability 224
dynamic buoyancy 129
dynamic stability 172, 199, 211, 213
dynamic viscosity 131, 134
earth’s magnetic field 305, 306
Eastman Kodak 18
Edison General Electric 16
Edison Speaking Phonograph Company 16
efficiency 51, 52, 103, 223, 224, 301, 302
Einstein's theory of relativity 112
elastic energy 51, 168
elasticity 9, 91, 132, 236
elastic recoil 172
elastomers 66
electrets 66
electrical energy 22, 51, 61
Electrical Exhibition of 1898 18
electric fields 66, 119
electromagnet(s) 63, 83, 84
electromagnetic wave 83, 84
 Electronic EAPs 66
electrostrictive graft elastomers 66
energy
 energy density 33, 57, 224, 261, 302–304
 energy function 104
 energy functional 104
equilibrium 9, 155, 163, 164, 171
ergonomic surgeon console 279
Euler–Lagrange equation 110, 111, 309
Euler–Lagrange method 110
exomusculature(s) 148, 249, 250, 259, 260, 262
exoskeleton(s) 249, 250–256, 258, 259, 260
Faraday law 81
Faraday's law of induction 61
feedback 64, 103–105, 117, 119, 237, 238, 277–279, 282
feed-forward movement 64
ferroelectric polymers 66
Festo AG 146
Feynman's sum over histories 111
flappers 150
foam 146, 292
footholds 163, 171
footprints 154
Ford 27
Foster-Miller Inc. 211
four-stroke cycle 55, 56
free will 111
French Academy of Medicine 11
French Academy of Sciences 20, 145
frequency
 frequency cutoff 95
 frequency range 76
friction forces 64, 137
Froude number 174, 176, 311
Fujisoft 210
Fujitsu 118, 210, 323
gait formula 197
gear 56, 197, 223, 236, 251, 299
General Electric 16
General Motors 27
Georgia Institute of Technology 259
Gify University, Japan 204
global minimum 107, 108
ground
 ground reaction force 14, 92, 155, 156, 158–160, 162, 163, 169, 170, 174, 315, 317
ground reference point 160
Guy's and St Thomas' Hospital, London 283

Hall effect 88, 89, 92, 93
haptic feedback 278, 282
Harvard University
Harvard University Concord Field Station 211
Harvard-MIT HST 233
Heartland Robotics 26
heat energy 53
Heisenberg's principle of uncertainty 111, 112
Hi-Fi 229, 230
Hill's equation 37
Hocoma AG 256
HONDA 206, 208, 209
hop, hopping 200, 201
hover, hovering 146–149, 152
human's spiritual nature 7
hydraulic fluid 59, 61, 232, 254
hydrogen 55, 153
hydrolysis 50, 298
hyperbolic relationship 37, 299

IBM 118, 323
ignition 54, 55, 56
illusion 194
image processing 86, 279
Imperial College, London 283
incidence 220
inclined plane 200
incompressibility 61
incompressible 61, 133–136, 244
inelastic 130
inertia 128, 129, 156, 308, 316
infinite 130, 167
infrared light 84, 86
initial velocity 129, 309
Integrated Surgical Systems Inc. 278
intelligence 28, 109, 111, 112
interference 44, 65, 82, 84

Intuitive Surgical Inc. 279
inverse dynamics 111
inverted pendulum 164–167, 311, 312
inviscid flow 129, 137
ion(s)
ionic electroactive polymers 65
ionic polymer gels 65
ionomeric polymer metal composites 65
I, Robot 23, 24
iRobot 26
iron
iron particle-rich fluid 234
irregular ground surfaces 155
isothermal processes 51
iWalk 235, 236

Jacobian 308
Johns Hopkins University 279
Johnson & Johnson 263, 264
jump 9, 12, 54, 116, 147, 184, 321, 322

Kawada Industries 209
kinetic energy 110, 167, 168, 169, 172, 308
King's College in Canterbury 7

Lagrange function 309
Lagrangian 110
laminar 131, 132, 136, 137, 139, 144, 303
laminates 229
lanyard cord 227
laser 22, 82, 83, 84, 225, 265, 266
lateral 182, 204, 205, 212, 213, 222, 256
leaf spring 236, 237
learning by demonstration 108
lee waves 143
Leipzig Heart Centre in Germany 285
Lenz’s rule 81
lever 3, 10, 15, 163, 281
lift 142–144, 149–152, 180, 292, 304–306
linear momentum 130, 133, 142
liner 225–227
link(s) 109, 156, 166, 167
lithium
lithium-ion battery 232, 236
lithium-polymer rechargeable battery 237
local minimum 107
Lockheed Martin 252
locomotion 14, 127, 128, 137, 139, 140, 141, 154, 169,
172–174, 176, 196, 197, 199, 256, 303, 310
London Health Sciences Centre (London, Ontario, Canada) 285
longitudinal 58
lubricants 57
magic 111
magnet(s)
 magnetic field 61–63, 65, 88, 92, 234, 301, 305, 306
 magnetic poles 63
martensite 66, 67
mass 26, 33, 56, 67, 89, 128–130, 133, 134, 136, 137, 140,
142, 143, 150, 154–156, 158, 163, 164, 166, 169,
170, 172–174, 176, 197, 202, 208, 209, 222–225,
Mavag-Fiat 195
measure of error 104–106
mechanical
 mechanical energy 52, 57, 61, 172, 302
 mechanical work 37, 45, 53
Medtronic 242
Michigan Critical Care Consultants (MC3) 245
Miranda Technologies Inc. 279
misalignments 230
MIT, or Massachusetts Institute of Technology
 MIT Artificial Intelligence Lab 28
 Lemelson–MIT Prize 238
 MIT Biomechatronics Group 39, 233, 236, 250, 252
 MIT Computer Science and Artificial Intelligence Lab, or CSAIL 26, 87
 MIT Leg Lab 204–206
 MIT Media Lab 86, 87
 MIT Newman Lab 257
model uncertainty 108
moment 13, 34, 90, 92, 155–163, 165–167, 170–172, 181,
moment balance strategy 165–167, 172
MossRehab in suburban Philadelphia, USA 255
motion analysis 14
movement primitives 109
MRC Biophysics Unit at King’s College 45
mumetal 300, 301
Myomo USA 258
nanomanipulation 65
nanometerology 65
nanopositioning 65
NASA Jet Propulsion Laboratory 211
National Academy of Sciences of the United States 45
National Institute of Advanced Industrial Science and Technology (AIST), Japan 209
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural interface</td>
<td>87</td>
</tr>
<tr>
<td>Naval Postgraduate School,</td>
<td>198</td>
</tr>
<tr>
<td>Monterey</td>
<td></td>
</tr>
<tr>
<td>Navier–Stokes equations</td>
<td>130,</td>
</tr>
<tr>
<td></td>
<td>132,</td>
</tr>
<tr>
<td></td>
<td>134,</td>
</tr>
<tr>
<td></td>
<td>135</td>
</tr>
<tr>
<td>network</td>
<td>57,</td>
</tr>
<tr>
<td></td>
<td>109,</td>
</tr>
<tr>
<td></td>
<td>112,</td>
</tr>
<tr>
<td></td>
<td>118,</td>
</tr>
<tr>
<td></td>
<td>119,</td>
</tr>
<tr>
<td></td>
<td>155,</td>
</tr>
<tr>
<td></td>
<td>219,</td>
</tr>
<tr>
<td></td>
<td>240,</td>
</tr>
<tr>
<td></td>
<td>252,</td>
</tr>
<tr>
<td></td>
<td>260,</td>
</tr>
<tr>
<td></td>
<td>266,</td>
</tr>
<tr>
<td></td>
<td>289,</td>
</tr>
<tr>
<td></td>
<td>302,</td>
</tr>
<tr>
<td></td>
<td>320–322</td>
</tr>
<tr>
<td>neural interface</td>
<td>235,</td>
</tr>
<tr>
<td></td>
<td>249</td>
</tr>
<tr>
<td>Newton’s drag</td>
<td>130,</td>
</tr>
<tr>
<td></td>
<td>131,</td>
</tr>
<tr>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Newton’s second law</td>
<td>111,</td>
</tr>
<tr>
<td></td>
<td>128,</td>
</tr>
<tr>
<td></td>
<td>129,</td>
</tr>
<tr>
<td></td>
<td>134,</td>
</tr>
<tr>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Newton’s third law</td>
<td>128</td>
</tr>
<tr>
<td>nickel</td>
<td>300</td>
</tr>
<tr>
<td>nickel–titanium (NiTi) alloys</td>
<td>67</td>
</tr>
<tr>
<td>Nippon Medical School</td>
<td>289</td>
</tr>
<tr>
<td>NIST</td>
<td>83</td>
</tr>
<tr>
<td>nitrogen</td>
<td>57</td>
</tr>
<tr>
<td>Nobel Prize</td>
<td>20, 21,</td>
</tr>
<tr>
<td></td>
<td>37, 45,</td>
</tr>
<tr>
<td></td>
<td>75, 112</td>
</tr>
<tr>
<td>node(s)</td>
<td>109,</td>
</tr>
<tr>
<td></td>
<td>114,</td>
</tr>
<tr>
<td></td>
<td>322</td>
</tr>
<tr>
<td>normal distribution</td>
<td>295</td>
</tr>
<tr>
<td>null hypothesis</td>
<td>297</td>
</tr>
<tr>
<td>nurse, nursing</td>
<td>173,</td>
</tr>
<tr>
<td></td>
<td>290,</td>
</tr>
<tr>
<td></td>
<td>291</td>
</tr>
<tr>
<td>objective function</td>
<td>104</td>
</tr>
<tr>
<td>obstacles</td>
<td>200,</td>
</tr>
<tr>
<td></td>
<td>208,</td>
</tr>
<tr>
<td></td>
<td>266,</td>
</tr>
<tr>
<td></td>
<td>305</td>
</tr>
<tr>
<td>occlusions</td>
<td>84</td>
</tr>
<tr>
<td>Ohio State University, or OSU</td>
<td>197,</td>
</tr>
<tr>
<td></td>
<td>198,</td>
</tr>
<tr>
<td></td>
<td>285</td>
</tr>
<tr>
<td>one-to-many (OTM) principle</td>
<td>57,</td>
</tr>
<tr>
<td></td>
<td>148,</td>
</tr>
<tr>
<td></td>
<td>150,</td>
</tr>
<tr>
<td></td>
<td>261</td>
</tr>
<tr>
<td>open-loop</td>
<td>64, 65</td>
</tr>
<tr>
<td>optimal solution</td>
<td>104</td>
</tr>
<tr>
<td>optimal trajectory</td>
<td>110,</td>
</tr>
<tr>
<td></td>
<td>266</td>
</tr>
<tr>
<td>optimization</td>
<td>107–109,</td>
</tr>
<tr>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Osaka University</td>
<td>290</td>
</tr>
<tr>
<td>Ossur</td>
<td>230,</td>
</tr>
<tr>
<td></td>
<td>232,</td>
</tr>
<tr>
<td></td>
<td>233</td>
</tr>
<tr>
<td>Otto Bock Orthopedic Industry</td>
<td>231</td>
</tr>
<tr>
<td>oxidizer</td>
<td>54</td>
</tr>
<tr>
<td>oxygen</td>
<td>33, 117,</td>
</tr>
<tr>
<td></td>
<td>137,</td>
</tr>
<tr>
<td></td>
<td>244,</td>
</tr>
<tr>
<td></td>
<td>245,</td>
</tr>
<tr>
<td></td>
<td>252,</td>
</tr>
<tr>
<td></td>
<td>286</td>
</tr>
<tr>
<td>paradox</td>
<td>111,</td>
</tr>
<tr>
<td></td>
<td>133,</td>
</tr>
<tr>
<td></td>
<td>134,</td>
</tr>
<tr>
<td></td>
<td>142,</td>
</tr>
<tr>
<td></td>
<td>260</td>
</tr>
<tr>
<td>path integral</td>
<td>111</td>
</tr>
<tr>
<td>PD control</td>
<td>309</td>
</tr>
<tr>
<td>period of small oscillations</td>
<td>316</td>
</tr>
<tr>
<td>permanent magnet</td>
<td>63, 64,</td>
</tr>
<tr>
<td></td>
<td>223,</td>
</tr>
<tr>
<td></td>
<td>305</td>
</tr>
<tr>
<td>permeability</td>
<td>49, 62,</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td>perturbation</td>
<td>109,</td>
</tr>
<tr>
<td></td>
<td>144,</td>
</tr>
<tr>
<td></td>
<td>163,</td>
</tr>
<tr>
<td></td>
<td>164,</td>
</tr>
<tr>
<td></td>
<td>166,</td>
</tr>
<tr>
<td></td>
<td>167,</td>
</tr>
<tr>
<td></td>
<td>171,</td>
</tr>
<tr>
<td></td>
<td>172</td>
</tr>
<tr>
<td>Philosophiæ Naturalis Principia Mathematica</td>
<td>8, 128</td>
</tr>
<tr>
<td>Photographic Investigation</td>
<td>12</td>
</tr>
<tr>
<td>photons</td>
<td>95</td>
</tr>
<tr>
<td>phototaxis</td>
<td>25</td>
</tr>
<tr>
<td>physical realism</td>
<td>157,</td>
</tr>
<tr>
<td></td>
<td>315</td>
</tr>
<tr>
<td>physician</td>
<td>3, 173,</td>
</tr>
<tr>
<td></td>
<td>225,</td>
</tr>
<tr>
<td></td>
<td>319</td>
</tr>
<tr>
<td>physicist</td>
<td>45, 110,</td>
</tr>
<tr>
<td></td>
<td>128,</td>
</tr>
<tr>
<td></td>
<td>129,</td>
</tr>
<tr>
<td></td>
<td>132,</td>
</tr>
<tr>
<td></td>
<td>134,</td>
</tr>
<tr>
<td></td>
<td>147</td>
</tr>
<tr>
<td>piezoelectric material</td>
<td>64</td>
</tr>
<tr>
<td>piezoelectric principle</td>
<td>82</td>
</tr>
<tr>
<td>pin lock</td>
<td>225,</td>
</tr>
<tr>
<td></td>
<td>227</td>
</tr>
<tr>
<td>plaster cast(s)</td>
<td>227</td>
</tr>
<tr>
<td>plaster of paris</td>
<td>227</td>
</tr>
<tr>
<td>plastics</td>
<td>65, 226</td>
</tr>
<tr>
<td>policy, policies</td>
<td>108–110</td>
</tr>
<tr>
<td>polymath</td>
<td>3, 4</td>
</tr>
<tr>
<td>polyphase</td>
<td>62</td>
</tr>
<tr>
<td>Portland State University</td>
<td>203</td>
</tr>
<tr>
<td>positron</td>
<td>95</td>
</tr>
<tr>
<td>potential energy</td>
<td>110,</td>
</tr>
<tr>
<td></td>
<td>129,</td>
</tr>
<tr>
<td></td>
<td>168,</td>
</tr>
<tr>
<td></td>
<td>169,</td>
</tr>
<tr>
<td></td>
<td>172,</td>
</tr>
<tr>
<td></td>
<td>308</td>
</tr>
<tr>
<td>power density</td>
<td>59, 67</td>
</tr>
<tr>
<td>power-to-mass ratio</td>
<td>33</td>
</tr>
<tr>
<td>predesigned</td>
<td>315</td>
</tr>
<tr>
<td>predetermined</td>
<td>109,</td>
</tr>
<tr>
<td></td>
<td>111</td>
</tr>
<tr>
<td>pressure</td>
<td>9, 27,</td>
</tr>
<tr>
<td></td>
<td>52, 53,</td>
</tr>
<tr>
<td></td>
<td>57–61,</td>
</tr>
<tr>
<td></td>
<td>79,</td>
</tr>
<tr>
<td></td>
<td>82, 91,</td>
</tr>
<tr>
<td></td>
<td>92, 121,</td>
</tr>
<tr>
<td></td>
<td>129, 133,</td>
</tr>
<tr>
<td></td>
<td>135,</td>
</tr>
<tr>
<td></td>
<td>142,</td>
</tr>
<tr>
<td></td>
<td>143,</td>
</tr>
<tr>
<td></td>
<td>145,</td>
</tr>
<tr>
<td></td>
<td>151,</td>
</tr>
<tr>
<td></td>
<td>152,</td>
</tr>
<tr>
<td></td>
<td>155,</td>
</tr>
<tr>
<td></td>
<td>159,</td>
</tr>
<tr>
<td></td>
<td>170,</td>
</tr>
<tr>
<td></td>
<td>208,</td>
</tr>
<tr>
<td></td>
<td>212,</td>
</tr>
<tr>
<td></td>
<td>222,</td>
</tr>
<tr>
<td></td>
<td>229,</td>
</tr>
<tr>
<td></td>
<td>230,</td>
</tr>
<tr>
<td></td>
<td>237,</td>
</tr>
<tr>
<td></td>
<td>238,</td>
</tr>
<tr>
<td></td>
<td>242,</td>
</tr>
<tr>
<td></td>
<td>244,</td>
</tr>
<tr>
<td></td>
<td>254,</td>
</tr>
<tr>
<td></td>
<td>290,</td>
</tr>
<tr>
<td></td>
<td>312,</td>
</tr>
<tr>
<td></td>
<td>315,</td>
</tr>
<tr>
<td></td>
<td>317,</td>
</tr>
<tr>
<td></td>
<td>319,</td>
</tr>
<tr>
<td></td>
<td>320</td>
</tr>
</tbody>
</table>
prevalence 220, 221
prime mover 61
principal component analysis
(PCA) 108, 170
principle components (PCs) 108
probability 111, 129, 295, 297, 321
proportional–integral–derivative
controller (PID controller) 105
prosthesis, prostheses 219–227,
230, 231, 232, 234–237, 239, 240, 320
prosthetic 95, 167, 221–226, 229,
230, 234–236, 239, 240, 249, 251, 252, 320, 321, 323
pulse 54, 82, 83
PVC 223
quantum nature 111
quantum states 111, 112
radionuclide 95
Rancho Los Amigos Hospital,
Downey, California 28
Raytheon 254
real time 86–88, 109, 277, 278
Rehabilitation Institute of Chicago
239
renaissance man 3
reservoir of stability 164, 172
resistance 82, 91, 93, 130, 134,
140, 144, 175, 230, 232, 242, 278, 305
Rethink Robotics 26
Reynolds number 130, 131, 134,
136, 137, 139, 140
ridge lift 143
right-hand rule 62
RIKEN-TRI Collaboration Center
for Human-Interactive
Robot Research (RTC) 291
robotic surgery 277, 278, 279
roll 205
root mean square (RMS)
amplitudes 297
rotations per minute (rpm) 244,
299
Royal Society, UK 45, 175, 236,
245
Ruhmkorff’s coil 54
run, running 9, 42, 47, 172–174,
176, 177, 184, 194, 200,
208, 210, 211, 213, 224,
232, 310, 311, 318, 322
Runaround 23, 24
R.U.R. (Rossum’s Universal Robots)
22
Saitama University, Japan 265
Sarcos 252–254
Scuola Superiore Sant’Anna, Pisa,
Italy 240
self-propulsion 127
shaft 62, 63, 224, 230, 299–302
shape-memory alloys 66, 67
shared-controlled surgery 278,
282
shear stress 134
shock 204, 212
shock tolerance 204
signal-to-noise ratio (SNR) 297
silicone 223, 226, 244
socket 17, 222, 225, 226–228,
236, 320
solenoid 200, 300, 301
SONY 209
sound vibrations 76
sound wave 84
Spaulding Rehabilitation Hospital’s
Gait Lab 235
spectrum 83, 246, 247
spline 300
spring mass model 172–174, 318
stability 162, 164, 165, 167, 171, 172, 175, 199, 211, 213, 222, 224, 251
standard deviation 295, 296
standing wave(s) 143
Stanford University 29, 108, 288
Stanford Research Institute (SRI) International 279
static buoyancy 128
stereoscopic 86, 87
stiffness 34, 58, 61, 225, 227, 261, 320
Stoke’s drag 303
Stokes flow 137, 140
Stokes’ radius 131, 136
strain 35, 65, 66, 91–93, 172, 197, 222, 232, 251, 254, 299
strain wave gearing (SWG) 299
stress tensor 135
stroke 51, 54, 55, 56, 122, 147, 149, 150, 151, 212, 256–258, 262, 319
stump socket interface technology 222
suction socket(s) 225
Superman 305
supervisory-controlled surgery 278
support base 157, 159, 160, 163, 164, 166, 170, 208, 211
surface firmness 198
surface-to-volume relationship 173
susceptibility 65
Sutter General Hospital, Sacramento, California 284
sway 162
symbiotic 230
teeth 289, 300
teleoperation 2
telescoping 196, 199, 311
teleurgical approach 278, 279
temperature 51–53, 66, 67, 79, 104, 105, 212, 301, 303
terrestrial stationary waves 21
therapist 257, 319
therapy 256–258
thermals 143
thermoplastic 227, 228
Thomas Jefferson University Hospital, Philadelphia 286
Thompson-Houston 16
three-element Hill model 38
Three Laws of Robotics 23
threshold 116
thrust 141–144, 147, 148, 152, 200
titanium 229, 249
Tokyo Institute of Technology 199
toroid 300, 301
Touch Bionics 239
training simulator 288
transducer 88, 92, 93, 226
transmission 16, 22, 62, 115, 230, 237, 250, 260
transversal 58
triangulation 82
Triassic period 138
Tsukuba University, Japan 254
t-test 297
turbulent 130, 131, 136, 137, 139, 303
ultraprecision 65
uneven ground 232
uneven terrain 209
Unimate 27, 282, 283
Unimation Inc. 27
University of Alberta 232
University of Belgrade 27
University of California, Berkeley 177, 203, 310
University of California, Irvine or UC Irvine 258, 259
University of Delaware 260
University of Leeds 175
University of London 45, 184
University of Michigan Medical Center 245
University of Padua 7
University of Rochester 14
University of Southern California 198
University of Texas 246
University of Tokyo 203, 290
University of Toronto 147
University of Utah 203, 252
unmodeled dynamics 108
urethanes 226
US National Academy of Engineering 201
US Patent Office 19
utility function 104
vacuum 26, 65, 225–228

VA hospitals 257
variable resistance 82
variance(s) 108, 174, 297, 318
vibrations 21, 76, 79, 246
vibro-tactile output 247
VICON 85
video game 84, 237
viscosity 129–132, 134, 135, 137, 288, 303
vision 26, 75, 82, 86, 87, 212, 225, 279, 280
vital spirit 7
voltage(s) 17, 54, 62, 66, 81, 88, 93, 105, 116, 212
vortex, vortices 131, 139

wake 139, 144

Wardenclyffe tower 21
war of currents 20
wearable 223, 259, 261, 302
wheelchair 262–267, 292
wheel-prints 154
Wizard of Menlo Park 20
Wizard of West 20
Worcester Polytechnic Institute, or WPI
WPI Popovic labs 148
working fluid 52, 53, 61

yaw 205

zero-moment balance strategy 165, 166
zero-moment point (ZMP) 155