NanoCellBiology: Multimodal Imaging in Biology and Medicine, edited by Bhanu P. Jena and Douglas J. Taatjes, is a collection of chapters that describe examples of the use of AFM, electron microscopy, photon correlation spectroscopy, confocal microscopy, fluorescence/CD spectroscopy, and other imaging approaches for revealing important structures and their function in cells. A wonderful example is the subject of the first several chapters, which describe the discovery of the porosome. Discovered in the 1990s, first in pancreatic acinar cells, the porosome is now considered a universal secretory portal in cells. The remaining chapters add to this excellent collection of studies employing high-resolution imaging to examine, for example, amylin aggregation, mRNA nanomachines, DNA delivery nanosystems, and other interesting applications of nano-cell-biology.

Prof. James A. Spudich
Stanford University School of Medicine, USA

"Bhanu P. Jena is a pioneer nano cell biologist, whose seminal discovery of a new cell structure called the ‘porosome,’ has provided a molecular understanding of the fractional release of intravesicular contents from cells during secretion. In this book, co-edited by Jena and Douglas J. Taatjes, experts in the field present examples of powerful imaging modalities that have been extremely valuable in elucidating a wide range of normal cellular events, as well as in studying disease progression, detection, and treatment. Chapters in the book provide a hard explanation of the subject matter with ample illustrations presented for clarity. This is a timely book, filled with useful resources—a must-read for both researchers and students in cell biology, physiology, biophysics, nanobiology, and nanomedicine."

Prof. Walter F. Boron
Case Western Reserve University, USA

In the mid 1980s, force spectroscopy was developed and used for the first time to image objects at ultra high resolution, extending our perception of biological samples into the nano realm of single molecules and their dynamics in chemical reactions, enabling a new understanding of Nature. It is due to these developments in nano science and technologies that there has been a renewed understanding of the living cells. This book discusses new approaches and applications that have profound impact on biology and medicine.

Bhanu P. Jena is George E. Palade University Professor and distinguished professor, Department of Physiology, Wayne State University School of Medicine, USA, and director of the NanoBioScience Institute at the university. He received his PhD from Iowa State University followed by postdoctoral studies and faculty positions at Yale University School of Medicine prior to his current position.

Douglas J. Taatjes is professor of pathology and director of the Microscopy Imaging Center in the College of Medicine, University of Vermont, USA. He received his PhD from the Biocenter, University of Basel, Switzerland, prior to his current position.
NANOCHELLI BIOLOGY
NANOCELL BIOLOGY
Multimodal Imaging in Biology and Medicine

edited by
Bhanu P. Jena and Douglas J. Taatjes
Dedicated to my students who have made my journey through science greatly rewarding and filled with excitement.

—Bhanu P. Jena
Contents

Preface xvii

1. Porosomes—The Universal Secretory Portals in Cells: A Brief Essay 1
 Bhana P. Jena

2. The Hair Cell Porosome: Molecular and Synaptic Implications 17
 Dennis G. Drescher
 2.1 Introduction 17
 2.2 Methods 19
 2.3 SNAREs 20
 2.4 The Porosome 24
 2.5 Discovery of the Hair-Cell Porosome 25
 2.6 Conclusions and Future Studies 29

3. The Neuronal Porosome Complex in Mammalian Brain: A Study Using Electron Microscopy 39
 Mzia G. Zhvania, Nadezhda J. Japaridze, Mariam G. Qsovreli, Vera G. Okuneva, Arkadi G. Surmava, and Tamar G. Lordkipanidze
 3.1 Introduction 40
 3.2 Neuronal Porosome in Rat, Cat, and the Dog Brains 42
 3.2.1 Material and Methods 42
 3.2.1.1 Animals and experimental design 42
 3.2.1.2 Electron microscopic examination 43
 3.2.1.3 Morphometric analysis of porosome diameter and depth 43
 3.2.1.4 Statistical analyses 46
 3.2.2 Results 46
3.3 Porosome in the Rat Brain: Effect of Hypokinetic Stress 50
3.3.1 Material and Methods 51
 3.3.1.1 Animals and experimental design: simulation of hypokinesia 51
 3.3.1.2 EM examination 51
 3.3.1.3 Morphometric analysis of porosome diameter and depth 52
 3.3.1.4 Statistical analyses 52
3.3.2 Results 52
3.4 Discussion 56
3.5 Conclusion and Future Studies 58

Ilan Hammel and Isaac Meilijson
4.1 Introduction 63
4.2 Intracellular Management of the Inventory of Granules 67
4.3 Does Granule Inventory Represent “New Old Stock”? 69
4.4 Cellular Communication: Evoked State Yields Information 73

5. Probing Protein Assembly, Biomineralization, and Biomolecular Interactions by Atomic Force Microscopy 85
Kang Rae Cho and James J. De Yoreo
5.1 Introduction 86
5.2 Materials and Methods 87
 5.2.1 Operation of AFM 87
 5.2.1.1 Contact mode 88
 5.2.1.2 Tapping mode 88
 5.2.1.3 Force spectroscopy 90
 5.2.2 Artifacts Observed in AFM Images: Tip Convolution 91
 5.2.3 Protein Imaging 94
5.2.3.1 Determining protein particle size by using calibration curves of protein heights versus molecular weights 95

5.2.4 Experimental Design of in situ AFM Investigation of Macromolecular and Biomineral Crystal Growth 98

5.3 In vitro Investigation of the Pathway for Recombinant Human Prion Protein Aggregation 100
 5.3.1 Seed Formation of HurPrPC 101
 5.3.2 Growth of β-Oligomers and Non-Fibrillar Aggregates 103

5.4 Inhibition of the Calcium Oxalate Monohydrate Crystal Growth by Biomolecules 106
 5.4.1 Equilibrium Shape of Pure COM Crystal and Its Growth 106
 5.4.2 Inhibition of Calcium Oxalate Monohydrate Crystal Growth by Biomolecules at the Nanometer and Micrometer Scales 108
 5.4.2.1 Citrate 108
 5.4.2.2 Osteopontin 110
 5.4.2.3 Tamm–Horsfall Protein 112

5.5 Free Energy of Amelogenin Protein C-Terminal Fragment Binding to Hydroxyapatite 114

5.6 Conclusions and Future Studies 117

6. High-Resolution Imaging of Amylin Aggregation and Internalization in Pancreatic Cells: Implications in Health and Disease 131

 Saurabh Trikha, Sanghamitra Singh, and Aleksandar M. Jeremic

 6.1 Role of Amylin Aggregation in Etiology of Type-2 Diabetes Mellitus 132
 6.2 Biochemical Approaches to Analyze Conformational Changes and Kinetics of Amylin Aggregation in Solution 133
 6.3 High-Resolution Force Imaging of Amylin Aggregation 135
6.4 Regulatory Role of Membranes in Amylin Oligomerization and Aggregation 142
6.5 Supramolecular Assembly of Amylin on Neutral, Anionic, and Lipid Raft Membranes 143
6.6 Distinct Roles of Anionic Lipids and Cholesterol in Supramolecular Assembly of Amylin on Planar Membranes 144
6.7 High-Resolution Microscopy of Amylin Aggregation and Internalization in Cells 148

Douglas J. Taatjes, Anthony S. Quinn, Xiao-Xuan Wu, Han-Mou Tsai, and Jacob H. Rand

7.1 Introduction 158
7.2 Materials and Methods 159
7.3 Results 160
7.3.1 AFM Assessment of the Modulation of APS by Pharmacological and Molecular Intervention 160
7.3.1.1 Hydroxychloroquine-mediated increase of AnxA5 binding 160
7.3.1.2 Reversal of AnxA5 resistance with “patch treatment” for AnxA5 defects 164
7.4 Conclusions and Outlook 168

Jian-Ping Jin

8.1 Evolution Is Data: Can We Get Fossil-Like Information for the Ancestor of a Present-Day Protein? 174
8.2 Antibodies as Three-Dimensional Nanostructure Probes 175
8.3 Enzyme-Linked Immunosorbant Assay for Protein Epitope Analysis 175
8.4 Exampling Studies of Troponin Subunits and Isoforms 176
8.5 Unidirectional Immunological Cross-Reactivity of Polyclonal Anti-TnI and Anti-TnT Antibodies 177
8.6 Detection of Evolutionarily Suppressed TnI-Like Epitope Structures in TnT 178
8.7 Detection of Evolutionarily Suppressed Fast TnT-Like Epitope Structure in Cardiac TnT 179
8.8 Detection of Evolutionarily Suppressed Cardiac TnT-Like Epitope Structure in Slow TnT 179
8.9 Implications 180
8.10 Applications 182
8.11 Summary and Perspectives 182

9. mRNA Nanomachines and Stress Reprogramming Following Brain Ischemia 187

Donald J. DeGracia, Jill T. Jamison, Manupreet Chawla, Monique K. Lewis, Michelle Smith, and Jeffery J. Szymanski

9.1 Introduction 190
9.2 The Complexity of mRNA Regulation 192
 9.2.1 mRNA Binding Proteins and mRNAs 192
 9.2.2 mRNA Ribonucleoprotein Complexes 193
 9.2.3 The Ribonomic Network and the Central Dogma 195
9.3 Brain Ischemia 196
 9.3.1 What Is Ischemia? 196
 9.3.2 Clinical Manifestations of Brain Ischemia 197
 9.3.3 The Holy Grail of Neuroprotection 198
9.4 Molecular Understanding of Brain Ischemia 199
 9.4.1 Neuronal Cell Biology of the Ischemic Period 200
 9.4.2 Neuronal Cell Damage in the Reperfusion Period 200
9.4.3 Intracellular Stress Responses in Reperfused Neurons

9.5 Translational Control in Post-Ischemic Neurons and Injured Cells

9.6 Persistent TA in Vulnerable Neurons
 9.6.1 Phenomenology of Post-Ischemic TA
 9.6.2 Ribosome Regulation and Post-Ischemic TA
 9.6.3 Post-Ischemic TA and Stress Responses
 9.6.4 Sequestration of Ribosomes

9.7 Stress Granules and Brain Ischemia and Reperfusion
 9.7.1 The Fuzzy Border between Sequestration and Regulation
 9.7.2 Stress Granules
 9.7.3 Detecting and Quantifying Stress Granules in Brain
 9.7.4 Stress Granules in Brain I/R
 9.7.5 Other SG Antigens

9.8 mRNA Granules in Reperfused Neurons
 9.8.1 mRNA Granules
 9.8.2 mRNA Granules Time Course and Correlation with Translation Arrest in 2VO/HT
 9.8.3 Colocalization of Proteins with mRNA Granules
 9.8.4 HuR Colocalization with mRNA Granules

9.9 Behavior of mRNA Granules under Other Conditions
 9.9.1 2VO/HT Model: Effect of Ischemia Duration on mRNA Granules
 9.9.2 Focal Cerebral Ischemia Effect on mRNA Granules
 9.9.3 Effect of Endothelin-1 on mRNA Granules
 9.9.4 Effect of Cycloheximide and Puromycin on mRNA Granules

9.10 Summary of mRNA Granules
9.10.1 Weakness and Limitation 239

9.11 Bringing It Altogether: A Unified Model of Cell Injury 240

9.11.1 Nonlinear Dynamical Model of Cell Injury 241

9.11.2 Brief Comments on the Qualitative Interpretation of This Model 245

9.12 Conclusion and Future Prospects 245

10. Physical Properties and Biomedical Applications of Superparamagnetic Iron Oxide Nanoparticles 257

Gavin Lawes, Ratna Naik, and Prem Vaishnava

10.1 Magnetism in Bulk Iron Oxide 259

10.2 Ferromagnetic and Ferrimagnetic Ordering 260

10.3 Magnetic Hysteresis 262

10.4 Magnetism in Iron Oxide Nanoparticles 264

10.5 Reduced Saturation Magnetization 265

10.6 Magnetic Interactions 266

10.7 Magnetic Hysteresis 266

10.8 Magnetic Moment of Fe₃O₄ and Dipolar Interaction 266

10.9 Superparamagnetism 267

10.10 Relaxation Mechanisms of Magnetic Nanoparticles 269

10.11 Role of Blocking Temperatures in Magnetic Properties 271

10.12 Zero Field–Cooled and Field-Cooled Behavior of Magnetic Nanoparticles 272

10.13 AC Susceptibility Measurements 275

10.14 Magnetohydrodynamics of Ferrofluids 276

10.14.1 Properties of Ferrofluids 277

10.14.2 Light Scattering Experiments with Ferrofluids 278

10.15 Hyperthermia and Relaxation in AC Magnetic Fields 279

10.16 Heat Dissipation in Magnetic Nanoparticles 280

10.17 Specific Absorption Rate 281

10.18 Magnetic Resonance Imaging 284
10.19 Synthesis 287
 10.19.1 Co-Precipitation 288
 10.19.2 Hydrothermal Synthesis 289
 10.19.3 Microemulsion 290
 10.19.4 Coating 291
 10.19.4.1 Organic coatings 291
 10.19.4.2 Inorganic coatings 292
10.20 Functional Groups 293
10.21 Biomedical Applications 294
 10.21.1 Magnetic Hyperthermia 294
 10.21.2 Controlled Drug Release 296
 10.21.3 Magnetic Resonance Imaging 297
 10.21.4 Gene Delivery 299
 10.21.5 Nanoparticle Endocytosis 299
10.22 Conclusions 301

11. Atomic Force Microscopy Imaging of DNA Delivery Nanosystems 321
 Yi Zou, David Oupicky, and Guangzhao Mao

11.1 Introduction 321
11.2 Materials and Methods 324
 11.2.1 Materials 324
 11.2.2 Polyplex Preparation 325
 11.2.3 LbL Preparation 325
 11.2.4 AFM Imaging 325
11.3 Results and Discussion 326
 11.3.1 Polyplex Self-Assembly 326
 11.3.2 Cooperative DNA Release vs. Non-Cooperative DNA Release 328
 11.3.3 A Proposed Disassembly Route for Bioreducible Polyplexes 329
 11.3.4 LbL Film Assembly 330
 11.3.5 LbL Film Disassembly 330
 11.3.6 Cross-Linking of LbL Films 334
11.4 Summary 335
12. Impedance Spectroscopy for Characterization of Biological Function

Brian C. Riggs, Janet L. Paluh, G. E. Plopper, and Douglas B. Chrisey

12.1 Introduction

12.1.1 History

12.1.2 General Information

12.1.3 Experimental Setup

12.1.4 More Than Just Equipment

12.1.5 Applications

12.2 Materials and Methods

12.2.1 Plotting the Data

12.2.2 Building an Equivalent Circuit Model

12.2.3 Validating and Improving the Model

12.2.4 Physical Meaning of Our Parameters

12.3 Applications

12.3.1 Fundamental Biology

12.3.1.1 Cell adhesion

12.3.1.2 Cell mobility

12.3.1.3 Cell signaling

12.3.2 Healthcare Applications

12.3.2.1 Hepatitis-B DNA sensors

12.3.2.2 Cancer metastasis

12.3.3 In the Field: Environmental Monitoring

12.3.3.1 Detection of environmental pollutants

12.3.3.2 Detection of foreign pathogens

12.4 Conclusion

Index
Preface

Just as the ultimate goal in biology is to unravel the structure and dynamics of a living cell at the atomic level, so is the major challenge in medicine to treat and ameliorate diseases noninvasively. This requires the targeting, imaging, and destruction of pathogen and diseased cells without harm to healthy cells and tissues. On close examination, however, the above two objectives seem inseparable, and an understanding of cellular structure-function is invaluable to the success in drug design, development, and therapy. Similarly, our understanding of the fundamental life processes or the treatment of diseases greatly relies on key technological advancements, an extraordinary example being the invention of the atomic force microscope (AFM), which gave birth to nanotechnology. In this book, applications of the AFM in the discovery of a new cellular structure, the “porosome,” in our understanding of cellular and molecular processes, and in the design and development of novel modalities in disease detection and treatment are presented. Similarly, novel approaches to understand molecular evolution, and the surprising involvement of mRNA nanomachines in disease processes, are also discussed.

Secretion is a fundamental cellular process involved in neurotransmission, and the release of hormones and digestive enzymes. Impaired secretion results in diseases such as diabetes and neuronal or digestive disorders. In Chapter 1, a brief commentary is provided on a new cellular structure, the “porosome,” a secretory nanomachine discovered nearly 16 years ago and demonstrated to be the universal secretory portal in cells. In Chapters 2 and 3, porosomes in hair cells and in brain neurons of different species of mammals are presented. The porosome discovery has clarified our understanding of the generation of partially empty secretory vesicles in cells following secretion, providing a molecular understanding of the process, and resulting in a paradigm-shift in our understanding of cell secretion. In Chapter 4, the biogenesis
of secretory vesicles and their distribution and dynamics, so critical to cell secretion, is elaborated. In Chapter 5, the authors introduce the reader to the application of the AFM in investigating protein assembly, biomineralization, and biomolecular interactions. Similarly, in Chapter 6, using a combination of AFM, fluorescence microscopy, and circular dichroism spectroscopy, the authors provide an insight into amylin aggregation, trafficking, and toxicity. These studies will provide the basis for the treatment of amyloid pathology such as amyloid deposits in type 2 diabetes. As in the case of amyloid pathophysiology, the utilization of the AFM to investigate novel treatment strategies is also in the advance. In Chapter 7, the use of AFM to investigate an autoimmune thrombotic conditions known as the antiphospholipid syndrome is discussed. Biological function of proteins resides in their three-dimensional shape, and an understanding of this three-dimensional protein structure is also essential for the design and development of drugs to regulate the protein. In Chapter 8, a novel approach to determine the molecular evolution of proteins using antibodies as nanoprobes, is presented. Similarly, the interaction of molecules and their assembly and disassembly within cells dictate cellular responses. In cardiac arrest and stroke, brain ischemia resulting from reduced blood flow to the brain leads to brain injury and even death. In Chapter 9, the authors describe a unique buildup of nucleoprotein granules of unknown composition in ischemic brain neurons. An understanding of the structure and composition of these granules promises a new approach for the treatment of brain ischemia. Magnetic nanoparticles have begun to show great promise in targeting, imaging, and destruction of pathogen and diseased cells without harm to healthy tissues. In Chapter 10, the emergence of magnetic nanoparticles for transformative application in medicine and therapy is discussed. Nano gene therapies using nanopolymers and virus-based therapy are rapidly being developed. In Chapter 11, AFM has been used to study DNA release dynamics from biopolymer-based nanosystems. New and novel methods and approaches to evaluate and image both biological and non-biological material are constantly in progress. In Chapter 12, the final chapter, the rapidly developing application of electrical impedance spectroscopy in biology is discussed. It is clear from the studies and findings discussed in this
book that the development of nanotechnology and its use in unraveling fundamental biological principles are key to medical breakthroughs and in the effective diagnosis and treatment of diseases.

Bhanu P. Jena
Douglas J. Taatjes