Electrostatics of Soft and Disordered Matter

“This is a timely and illuminating volume, reviewing the state of the art of Coulombic fluids, and shedding some light on the counter-intuitive phenomena that emerge from Coulombic interactions. The book is in particular interesting because it reviews the fundamental role played by Coulombic interactions when macromolecules are dissolved in an aqueous milieu. An up-to-date introduction of the subject as well as advanced topics that will be welcome by students and researchers alike.”

Prof. David Andelman
Tel-Aviv University, Israel

Recently there has been a surge of activity to elucidate the behavior of highly charged soft matter and Coulomb fluids in general. Such systems are ubiquitous especially in biological matter where the length scale and the strength of the interaction between highly charged biomolecules are governed by strong electrostatic effects. Several interesting limits have been discovered in the parameter space of highly charged many-particle Coulomb matter where analytical progress is possible and completely novel and unexpected results have been obtained.

This book fills the void that exists in the literature, cross-pollinates different theoretical and simulation approaches with new experiments, and develops a unified perspective on the counter-intuitive features of the electrostatic interactions, which to a large extent determine the stability and conformations of most important biological macromolecules. The scope of the book is thus to present current advances in the field of Coulombic (bio)colloidal systems, upgrading the previous literature that summarized the state of the art of the field about 15 years ago.

David Dean is a professor of physics at the Laboratoire d’Ondes et Matière d’Aquitaine at the Université de Bordeaux, France. He is also the president of the Scientific Steering Committee of the Institute Henri Poincaré, Paris, and in 2006, he was part of the junior promotion of the Institut Universitaire de France. His research interests include the statistical mechanics of soft matter, disordered systems, and stochastic processes.

Jure Dobnikar is a senior scientist at the Department of Chemistry, University of Cambridge, UK, and Jožef Stefan Institute, Ljubljana, Slovenia. His current research includes nanoparticle organization in polymer layers, self-assembly and non-equilibrium dynamics of magnetic colloids, the role of multivalent binding in cellular immune response, and modeling of bacterial motility.

Ali Naji is an associate professor of physics at the Institute for Research in Fundamental Sciences (IPM), Tehran. His research interests include Coulomb fluids and highly charged soft and biological matter such as charged polymers, membranes and colloids, electrostatics of DNA complexes, diffusion processes on ruffled biological membranes, and Casimir effect in disordered systems.

Rudolf Podgornik is a professor of physics at the Department of Physics, University of Ljubljana; scientific councillor at the Theoretical Physics Department, Jožef Stefan Institute, Ljubljana; and an adjunct professor at the University of Massachusetts, Amherst, and the Case Western Reserve University, Cleveland, USA. His main scientific interests are Coulomb systems, soft matter, macromolecular physics, and biophysics.
Electrostatics of Soft and Disordered Matter
Electrostatics of Soft and Disordered Matter

edited by
David Dean
Jure Dobnikar
Ali Naji
Rudolf Podgornik
Contents

Preface xv
Introduction xvii

1 Surprising Challenges 1
V. Adrian Parsegian

PART I COULOMB FLUIDS: FROM WEAK TO STRONG COUPLING

2 A Field Theory Approach for Modeling Electrostatic Interactions in Soft Matter 11
Paul Duncan, Marius M. Hatlo, and Leo Lue
2.1 Introduction 11
2.2 Basic Formalism 12
 2.2.1 Splitting 14
 2.2.2 Short-Wavelength Field 15
 2.2.3 Long-Wavelength Field 15
 2.2.4 Free Energy 16
2.3 Applications 17
 2.3.1 One-Component Plasma 18
 2.3.2 Planar Geometry 19
 2.3.3 Spherical Cell Model 20
2.4 Conclusions 21

3 Extended Poisson–Boltzmann Descriptions of the Electrostatic Double Layer: Implications for Charged Particles at Interfaces 25
Derek Frydel and Martin Oettel
3.1 Introduction 25
3.2 Charged Particles at Electrolyte Interfaces 27
Contents

3.3 Modification Strategies for Improving the Poisson–Boltzmann Description 29
3.4 Outlook to Nonlocal Descriptions 33

4 Aspects of One-Dimensional Coulomb Gases 37
Ronald R. Horgan, David S. Dean, Vincent Démery, Thomas C. Hammant, Ali Naji, and Rudolf Podgornik
4.1 Introduction 37
4.2 Theoretical Methods 38
4.3 Bilayer Soap Film in Ionic Solution 40
4.3.1 Large L: Bulk Pressure 41
4.3.2 Finite L: Exact Methods 42
4.3.3 Classical or Mean-Field Theory 43
4.4 Counterions between Charged Surfaces 43
4.4.1 Exact Results 44
4.4.2 Weak Coupling 44
4.4.3 Strong Coupling 45
4.4.4 Comparison 46
4.5 Ionic Liquid Lattice Capacitor 47
4.5.1 Results 48
4.6 Conclusion 49

5 Electrostatics in Electrolytes Expressed in an Exact Formalism Reminiscent of the Poisson–Boltzmann Picture 51
Roland Kjellander
5.1 Poisson–Boltzmann Approximation in Perspective 51
5.2 Relationships with Screened Coulomb Potential 56
5.3 The General Exact Case 60
5.4 Summary and Concluding Remarks 65

6 Legendre Transforms for Electrostatic Energies 69
Justine S. Pujos and A. C. Maggs
6.1 Introduction 69
6.2 Phase Separation Coupled to Electrostatics 72
6.3 From Poisson–Langevin to Polarization 74
6.4 Conclusions 77
Contents

7 Ionic Liquids and Ionic Liquid + Solvent Mixtures, Studied by Classical Density Functional Theory 81
Ryan Szparaga, Clifford E. Woodward, and Jan Forsman
7.1 Introduction 81
7.2 Model and Theory 82
7.3 Results 88

8 The Wigner Strong-Coupling Approach 93
Ladislav Šamaj and Emmanuel Trizac
8.1 Model 93
8.2 One-Plate Geometry 95
8.2.1 Homogeneous Dielectric Case 95
8.2.2 Dielectric Inhomogeneity 99
8.3 Two-Plate Geometry 101
8.4 Conclusion 104

9 Moderately Coupled Charged Fluids Near Dielectric Interfaces and in Confinement 107
J. W. Zwanikken
9.1 Introduction 108
9.2 New Physics in between 109
9.3 Primitive Model 110
9.4 Debye–Hückel 110
9.5 Ornstein–Zernike Theory 112
9.6 Oscillations in the Potential of Mean Force 113
9.7 Density Functional Theory 115
9.8 The Anisotropic HNC 116
9.9 Double Layer Deformation and Like-Charge Attraction 118
9.10 Conclusion 119

PART II IONS AT INTERFACES AND IN NANOCONFINEMENT

10 Dielectric Profiles and Ion-Specific Effects at Aqueous Interfaces 129
Douwe Jan Bonthuis and Roland R. Netz
10.1 Introduction 129
Contents

10.2 Calculation of the Dielectric Profile 130
10.2.1 Construction of the Dielectric Dividing Surface 133
10.3 Modified Poisson–Boltzmann Equation 134
10.3.1 Double-Layer Capacitance 136
10.4 Ion-Specific Effects 137
10.5 Summary and Conclusion 140

11 Hydration Repulsion between Polar Surfaces: An Atomistic Simulation Approach 143
Matej Kanduč, Emanuel Schneck, and Roland R. Netz
11.1 Introduction 143
11.1.1 Hydration Repulsion 143
11.2 Modeling Lipid Bilayers 144
11.2.1 Atomistic Molecular Dynamics Simulations 144
11.2.2 Keeping the Water Chemical Potential Constant: Thermodynamic Extrapolation 146
11.3 Results and Discussion 147
11.4 Conclusion 152

12 The Electrode–Ionic Liquid Interface: A Molecular Point of View 155
Céline Merlet, Mathieu Salanne, Paul A. Madden, and Benjamin Rotenberg
12.1 Introduction 155
12.2 Methods and Models 156
12.3 Ionic Liquids at Graphite Electrodes 158
12.4 Beyond Planar Electrodes 161
12.5 Conclusion and Perspectives 163

13 Modeling Electrokinetics through Varying Length and Time Scales 169
l. Pagonabarraga and B. Rotenberg
13.1 Introduction 169
13.2 Simulation Strategies 170
13.3 Kinetic Models: Lattice Boltzmann 174
13.4 Conclusion 178
14 Polarizable Surfaces: Weak and Strong Coupling Regimes 181
Alexandre P. dos Santos and Yan Levin
14.1 Introduction 181
14.2 Monte Carlo Simulations 182
14.3 Theory: Weak Regime 183
14.4 Strong Coupling Regime 186
14.5 Conclusion 189

PART III COMPLEX COLLOIDS

15 Coarse-Grained Modeling of Charged Colloidal Suspensions: From Poisson–Boltzmann Theory to Effective Interactions 201
Alan R. Denton
15.1 Introduction 201
15.2 Primitive Model 202
15.3 One-Component Model: Effective Hamiltonian 204
15.4 Poisson–Boltzmann Theory 205
15.5 Cell Model Implementation 208
15.6 Effective-Interaction Implementation 209
15.7 Outlook 215

16 Many-Body Interactions in Colloidal Suspensions 221
Jure Dobnikar
16.1 Introduction 221
16.2 Modeling Colloidal Suspensions 222
16.3 Effective Interactions 224
16.4 Three-Body Interactions 227
16.5 Many-Body Interactions in Dense Suspensions 229
16.6 Conclusion 231

17 Controlling the Fluid–Fluid Mixing–Demixing Phase Transition with Electric Fields 239
Jennifer Galanis, Sela Samin, and Yoav Tsori
17.1 Equilibrium Phase Behavior 240
17.2 Phase Separation Dynamics 246
18 Dynamic Electric Response of Charged Fibrous Virus (fd) Suspensions: Interactions of Charged Colloidal Rods in AC Electric Fields

Kyongok Kang and Jan K. G. Dhont

18.1 Introduction
18.2 Electrode Polarization
18.3 Bulk Electric Response: Reversible Electric Phase/State Diagram
 18.3.1 Low Frequency Induced Chiral-Nematic (N* and N_D) Phases and Dynamical (D_3 and D_2) States
 18.3.2 High Frequency Induced Orientational Order in the H-Phase
 18.3.3 Field-Induced Non-Equilibrium Criticality
18.4 Conclusion

19 Statistical Thermodynamics of Supercapacitors and Blue Engines

René van Roij

19.1 Introduction
19.2 Thermodynamics of Heat Engines: A Reminder
19.3 Thermodynamics of Electrode–Electrolyte Systems
19.4 Maxwell Relations and Response Functions
19.5 Ensembles and Charge Distribution
19.6 Conclusion

PART IV BIOLOGICAL SYSTEMS AND MACROMOLECULAR INTERACTIONS

20 Cluster Phases in Colloids and Proteins

Suliman Barhoum, Amit K. Agarwal, and Anand Yethiraj

20.1 Introduction
20.2 Clustering in Colloids
 20.2.1 Electrostatics and Depletion Attractions
 20.2.2 Dipolar Interactions
20.3 Cluster Phases in Proteins
20.4 Conclusion
21 Estimation of Solvation Electrostatic Free Energy of Biomolecular Systems by Numerical Solution of the Poisson–Boltzmann Equation

José Colmenares, Sergio Decherchi, and Walter Rocchia

21.1 Introduction

21.2 Electrostatic Continuum Models and the Poisson–Boltzmann Equation

21.3 Input to the Model

21.3.1 Molecular Surface Construction

21.4 Input to the Numerical Solver

21.5 Numerical Solution via Finite-Difference Scheme

21.6 Analysis of the Results: Energy Calculation and Partitioning

21.7 Conclusion

22 Modeling DNA in Nanopores

Stefan Kesselheim and Christian Hom

22.1 Introduction

22.2 A Brief Overview of Nanopore Translocation Experiments

22.3 Theory of Nanopore Translocation

22.3.1 Translocation and Chain Dynamics

22.3.2 Motion of Small Ions and Electrophoresis

22.4 Electrostatic and Dielectric Translocation Barriers

23 Mean-Field Electrostatics of Stiff Rod-Like Ions

Sylvio May and Klemen Bohinc

23.1 Introduction

23.2 PB Model for Stiff Rod-Like Ions

23.3 Predictions of the PB Model

23.4 Conclusion

24 Physics of Counterion-Mediated Attractions between Double-Stranded DNAs

Fabien Paillusson

24.1 Introduction

24.2 Planar Kornyshev–Leikin Theory
24.2.1 One Plate in a Salt Solution 348
24.2.2 Interaction between Two Plates 350
24.3 Strong Coupling Regime 350
 24.3.1 Virial Strong Coupling 351
 24.3.2 Wigner Strong Coupling 351
 24.3.2.1 Case of one plate 352
 24.3.3 Case of Like-Charged Plates 353
 24.3.3.1 Short distances 353
 24.3.3.2 Intermediate distances 354
 24.3.3.3 Large distances 354
24.4 Dumbbell-Like Counterions 355
 24.4.1 The Model 355
 24.4.2 Mean Field Theory 355
 24.4.2.1 A modified PB equation 355
 24.4.2.2 Plate–plate interaction 356
 24.4.3 SC Regime for Dumbbells 357
 24.4.4 Validity Domain and the Point-Like Limit 358
24.5 DNA–DNA Attraction 358

PART V DISORDER EFFECTS IN COULOMB INTERACTIONS

25 Coulomb Interactions between Disordered Charge Distributions 367
 David S. Dean, Ali Naji, Ronald R. Horgan, Jalal Sarabadani, and Rudolf Podgornik
 25.1 Introduction 367
 25.2 Normal Electrostatic Forces between Charge-Disordered Slabs 369
 25.3 Lateral Electrostatic Forces between Charge-Disordered Slabs 375
 25.4 Electrostatic Torques between Charge Disordered Slabs 376
 25.5 Conclusions 378

26 Short-Range Disorder and Electrostatic Interactions in Macromolecules 381
 Y. Sh. Mamasakhlisov, A. V. Badasyan, and V. F. Morozov
 26.1 Introduction 381
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.2 Polyelectrolytes with Short-Range Disorder</td>
<td>383</td>
</tr>
<tr>
<td>26.3 Free Energy Calculation: Replica Trick</td>
<td>385</td>
</tr>
<tr>
<td>26.4 Weak Disorder Expansion</td>
<td>389</td>
</tr>
<tr>
<td>27 Interaction between Disordered Heterogeneous Charged Surfaces</td>
<td>393</td>
</tr>
<tr>
<td>Gilad Silbert and Jacob Klein</td>
<td></td>
</tr>
<tr>
<td>27.1 Introduction</td>
<td>394</td>
</tr>
<tr>
<td>27.2 Results and Discussion</td>
<td>396</td>
</tr>
<tr>
<td>27.3 Materials and Methods</td>
<td>407</td>
</tr>
<tr>
<td>27.3.1 Surfactant Coating</td>
<td>407</td>
</tr>
<tr>
<td>27.3.2 Surface Force Balance Measurements</td>
<td>407</td>
</tr>
<tr>
<td>27.3.3 Electrostatic Double-Layer Interactions</td>
<td>408</td>
</tr>
<tr>
<td>Index</td>
<td>413</td>
</tr>
</tbody>
</table>
Preface

The last relatively complete compendium of the electrostatics of soft matter, edited by C. Holm, P. Kekicheff, and R. Podgornik, saw the light of day in the distant 2001, immediately following the Les Houches École de Physique NATO Advanced Study Institute’s school on “Electrostatic effects in soft matter and biophysics,” which itself grew out of a workshop organized by W. Gelbart, V. A. Parsegian, and P. Pincus at the Kavli Institute for Theoretical Physics (KITP) in Santa Barbara, USA, in 1998 with a similar theme. The destiny of the present volume had a similar time course: from an idea at the 2008 KITP workshop “Theory and Practice of Fluctuation-Induced Interactions,” organized by T. Emig, M. Kardar, V. A. Parsegian and R. Zandi, to the CECAM workshop “New Challenges in Electrostatics of Soft and Disordered Matter,” organized by the editors of this volume, at the University of Toulouse III, France, in 2012. Since we were able to gather in Toulouse most of the leading researchers in the field, we decided that the time was appropriate for a new compendium of the state of the art in Coulomb fluids that we can offer to the readers in order to foster the development and promote the education in this exciting and rapidly growing field.

All the 27 chapters of this book contain illuminating and well-written mini-reviews of recent work by some of the foremost scientists working in these fields today. The introductory chapter was written by V. A. Parsegian, who provided some personal reminiscences and historical insights, followed by five distinct blocks of chapters with self-explanatory titles: I. Coulomb Fluids: From Weak to Strong Coupling, II. Ions at Interfaces and in Nanoconfinement, III. Complex Colloids, IV. Biological Systems and Macromolecular Interactions, and V. Disorder Effects in Coulomb Interactions. We assembled contributions that would adequately reflect the various
aspects and colorful variety of different methodologies used today to describe the properties of thermal systems with long-range Coulomb interactions. Because of our insistence that the chapters be written with students in mind, we are convinced that the book will be useful to undergraduate as well as graduate students who wish to learn about the intricacies of these systems with sometimes very counter-intuitive behaviors, while the more seasoned researchers will benefit from an up-to-date account of both the experimental phenomenology and the rich variety of theoretical approaches to Coulomb fluids.

While the preparation of this book at the end of 2013 was in full swing, we learned the sad news that N. G. Van Kampen passed away. We deem that it is appropriate to mention here his seminal contribution to the understanding of (thermal) fluctuation interactions in Coulomb systems, addressed in several chapters of the present book within the context of the so called “weak-coupling theory”. Van Kampen’s “heuristic” mode summation approach to (Casimir) fluctuation interactions, proven to be actually exact by V. L. Ginzburg and Y. S. Barash in the eighties, was later generalized by V. A. Parsegian, B. W. Ninham, and G. H. Weiss to finite temperatures and shown to be equivalent to the Lifshitz theory.

At the end we would like to thank all the contributors of this volume for their fine work and personal involvement that made the publication of this book possible. We would also like to thank the helpful staff at Pan Stanford Publishing, as well as CECAM for funding the workshop “New Challenges in Electrostatics of Soft and Disordered Matter” at University of Toulouse III in 2012. We would like to specifically thank Dr. Valerie Blanchet, who took time off from her research on femtosecond quantum chemistry, to help us in the organization of our largely classical conference.

David S. Dean
Jure Dobnikar
Ali Naji
Rudolf Podgornik
Winter 2013
Introduction

The field of electrostatically mediated interactions in classical systems has a long and illustrious history. At its inception it was a discipline firmly implanted as a part of physical chemistry and many of the early results are today given as examples of the development of the statistical physics of interacting systems. Much theoretical progress has been made since then, but as with all three-dimensional interacting particle systems, the exact solution of the statistical mechanics of a system involving mobile charges (Coulomb fluid) is still absent. Electrostatic interactions have however played a central role in the analysis of interacting particle systems. With respect to other systems, the presence of long-range Coulomb interactions leads to interesting physical and mathematical properties of these systems—they exhibit screening, sum rules, and have elegant field theoretical formulations that enable their analysis in both weakly and strongly charged limits. In particular there has been a recent surge of activity in order to elucidate the details of the behavior of charged soft matter and Coulomb fluids in the limit of strong coupling, which emerged as a new regime, apart and distinct from the well-known Poisson–Boltzmann or weak coupling regime. These two limits and the corresponding regimes in the behavior of highly charged many-particle Coulomb matter are important also because they allow for very illuminating analytical progress to be made. Systems of this type are ubiquitous in soft matter; especially in bio-matter, where they set the length scale and strength of the interaction between highly charged biomolecules. In parallel to theoretical progress in the field, the development of biophysics and the emergence of soft condensed matter has lead to the experimental study of systems where electrostatic effects are dominant and also variations in temperature and salt concentration.
(quantities which are relatively easy to tune experimentally) lead to rich and interesting behavior.

The field of electrostatic effects is therefore particularly important today because electric charges are commonplace in soft and biological systems. Most soft materials such as polymers, colloids, proteins and membranes acquire surface charges when dissolved in water and release small mobile ions into the solution. They are easily deformed by potentials comparable to thermal energy and thus electrostatic forces constitute a prominent factor determining the structure and properties of these materials in various applications. In industry, charged macromolecules are used, due to their high water solubility, in a whole range of applications such as in design and processing of non-toxic environmentally friendly materials. In biology, electrostatic effects come into play in many examples such as in the DNA packaging in the cell nucleus and also in the formation of DNA condensates as observed, for instance, in bacteriophages that can inject their DNA into a target cell forming therein a torus-like DNA condensate with a diameter of up to a few hundred nanometers. Electrostatic forces in this latter example enter in a counterintuitive fashion, leading to strong attraction between like-charged segments of DNA. Recent studies show that such strongly coupled structures are dominated by attractive correlation forces induced by counterions between juxtaposed macromolecular surfaces and they emerge when the surfaces are highly charged and counterions are multivalent.

With all these recent developments in mind, the editors of this book organized a CECAM sponsored workshop held in Toulouse, France, in the Spring of 2012. The idea was to bring together both experimentalists and theorists working on these new challenges in electrostatics of soft and disordered systems to present and discuss their recent results. The interest in the workshop was intense and in addition to the invited speakers, many other scientists also attended it. At the end of the workshop the general mood was that we should try to assure the legacy of this workshop by preparing a volume of proceedings that would serve to give a snapshot of the state of the art at that precise moment and point out the open questions and challenges in the field.
The contributions to this book naturally fell into five distinct areas that make up the five parts of this book. One is the low-temperature Wigner crystal Ansatz, which starts with the zero-temperature ground state corresponding to crystallization of counterions in the 2D Wigner lattice close to the surfaces. Another is a limiting strong-coupling approach based on the functional-integral representation of the partition function. Both approaches yield an effective interaction between two apposed equally charged surfaces that can be counter-intuitively attractive. Furthermore, fluctuations about the mean-field (Poisson–Boltzmann) limit have also been studied and have been shown to generalize the concept of the temperature-dependent Casimir interactions. Certain aspects of realistic Coulomb systems are shared by exactly soluble one-dimensional and two-dimensional Coulomb systems and help our understanding of various approximation in order to assess their applicability in well-controlled situations. In most realistic systems, however, there are multiple-length scales precluding their analysis within a single regime. It is for this reason that this book in which experts have presented their various and different approaches is timely in order to realize how these theories can be linked with each other to describe complex systems containing a number of regimes. Dielectric properties of the surfaces and interfaces have been treated at the continuum level as well as various levels of other more microscopic approaches. In particular, the granularity of the solvent introduces phenomena which, while known experimentally for many years, are only now becoming the focus of sophisticated simulation approaches as well as coarse-grained semi-analytical approaches that take various aspects of the non-homogeneous nature of interfaces into account. In this context, one should particularly mention the hydration interactions and the ion-specific effects where we seem to be on a good track to finally give a theoretical perspective to various experimentally well-studied phenomena. Many-body aspects of electrostatic interactions with mobile charges in complicated mixed solvents as well as dielectric response of polyelectrolyte solutions introduce novel features in the theories of electrostatic interactions. These aspects are furthermore developed in the context of biological systems. Solvation interactions and specific features of electrostatic interactions in
systems containing biological macromolecules introduce additional refinements of the charge distribution models, pertaining either to the fixed charges of the macromolecular surfaces or indeed to the counterions themselves. These generalizations introduce very specific features to interactions between such quintessential biological macromolecules as DNA. While charge distributions of various fixed magnitudes and geometries certainly cover many of the real-world charged interfaces, one nevertheless has to deal also with structural charge disorder, which will almost invariably be present. Relaxing the Ansatz of a uniform surface charge density and allowing for a disordered component characterizing the charge distribution has led to emergence of new phenomena leading to extremely long-range interaction potentials between disordered charge distributions that can be compared with intriguing features of recent careful experiments.

All the chapters of this book contain illuminating and well written mini-reviews of recent work by some of the foremost scientists working in these fields today. The contributors have paid particular attention to the pedagogy of their chapters so that the book can provide a very up-to-date introduction of the subject to young scientists as well as more established scientists who wish to learn about new developments in the field.