Experimental methods employing spin resonance effects (nuclear magnetic resonance and electron spin resonance) are broadly used in molecular science due to their unique potential to reveal mechanisms of molecular motion, structure, and interactions. The developed techniques bring together biologists investigating dynamics of proteins, material science researchers looking for better electrolytes, or nanotechnology scientists inquiring into dynamics of nano-objects. Nevertheless, one can profit from the rich source of information provided by spin resonance methods only when appropriate theoretical models are available. The obtained experimental results reflect intertwined quantum-mechanical and dynamical properties of molecular systems, and to interpret them one has to first understand the quantum-mechanical principles of the underlying processes.

This book concentrates on the theory of spin resonance phenomena and the relaxation theory, which have been discussed from first principles to introduce the reader to the language of quantum mechanics used to describe the behaviour of atomic nuclei and electrons. There is a long way from knowing complex formulae to apply them correctly to describe the studied system. The book shows through examples how symbols can be "replaced" in equations by using properties of real systems in order to formulate descriptions that link the quantities observed in spin resonance experiments with dynamics and structure of molecules.

Danuta Kruk is associate professor at the Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Poland. She received her master’s and doctorate degrees in physics as well as attained her habilitation from the Jagiellonian University, Krakow, Poland. She has also been associated with Physical Chemistry Arhenius Laboratory, Stockholm University, Sweden; Faculty of Physics, Technical University Darmstadt, Germany; and Experimentalphysik, University of Bayreuth, Germany. She is author of the book Theory of Evolution and Relaxation of Multi-Spin Systems. Her current research interests are theory of spin resonances and relaxation processes, dynamics of condensed matter including molecular and ionic liquids, polymers and biological macromolecules, spin relaxation in paramagnetic and superparamagnetic systems, transport phenomena and dynamics of electrolytes and nanofluids, and dynamical properties of solids.
Understanding Spin Dynamics
Understanding Spin Dynamics

Danuta Kruk
Contents

Preface ix

1 Classical Description of Spin Resonance 1
 1.1 Larmor Precession and Bloch Equation 1

2 Introduction to Spin Relaxation 7
 2.1 The Nature of Relaxation Processes 7
 2.2 Correlation Functions and Spectral Densities 18
 2.3 The Simplest Relaxation Formula 20
 2.4 Bi-Exponential Relaxation 31

3 Formal Theory of Spin Relaxation 41
 3.1 The Concept of Density Operator 41
 3.2 The Liouville von Neumann Equation and Relaxation Rates 45
 3.3 Liouville Space and Redfield Kite 50
 3.4 Validity Range of the Perturbation Theory 61
 3.5 Spin Relaxation in Time Domain 62

4 Spin Resonance Lineshape Analysis 65
 4.1 The Concept of Spin Resonance Spectrum 65
 4.2 Spin Resonance Spectrum and Motion 72
 4.3 Examples of Spin Resonance Spectra 75
 4.4 Rigid Spectrum and the Lineshape Theory 81
 4.5 Spin Resonance Spectra and Correlation Functions 83

5 Spin Relaxation: A More General Approach 87
 5.1 Generalized Spectral Densities 87
 5.2 Residual Dipolar Interactions 89
Contents

5.3 Interference Effects 94
5.4 Cross-Correlation Effects 100
5.5 Hierarchy of Spin Relaxation Processes 103

6 Electron Spin Resonance of Spins 1/2 107
6.1 ESR Spectra and Scalar Interactions for 15N Systems 107
6.2 ESR Spectra and Scalar Interactions for 14N Systems 117
6.3 ESR Spectra at Low Frequencies 127
6.4 g-Tensor Anisotropy 130

7 Nuclear Spin Relaxation in Paramagnetic Liquids 135
7.1 Proton Relaxation and Hyperfine Coupling 135
7.2 Translational Dynamics in Paramagnetic Liquids 146
7.3 Effects of Electron Spin Relaxation 151
7.4 Hilbert Space and Spin Relaxation 156

8 Spin Resonance Beyond Perturbation Range 161
8.1 Intermediate Spin Resonance Spectra 161
8.2 Stochastic Liouville Formalism 163
8.3 2H NMR Spectroscopy and Motional Heterogeneity 169
8.4 2H NMR Spectroscopy and Mechanisms of Motion 171
8.5 Deviations from Perturbation Approach 176

9 Dipolar Relaxation and Quadrupolar Interactions 181
9.1 Quadrupole Relaxation Enhancement 181
9.2 Perturbation Approach to QRE 193
9.3 Polarization Transfer 196
9.4 QRE and Internal Dynamics of Molecules 200

10 Effects of Mutual Spin Interactions 205
10.1 ESR Spectra for Interacting Paramagnetic Centers 205
10.2 Interference Effects for Nitrooxide Radicals 219
10.3 Spin Interactions and Molecular Geometry 225

11 Dynamic Nuclear Polarization 227
11.1 Principles of Dynamic Nuclear Polarization (DNP) 227
11.2 DNP and ESR Spectrum 234
11.3 Systems of Many Spins 236
12 Anisotropic and Internal Dynamics

12.1 Anisotropic Rotation 243
12.2 Internal Dynamics 248

Index 253
Preface

Nuclear magnetic resonance (NMR) and electron spin resonance (ESR) experimental techniques are broadly used and highly appreciated in 'molecular science' as they are a powerful tool for studying dynamical processes in condensed matter. Nevertheless (one could say unfortunately) in most cases this knowledge is not easily accessible. The difficulties lie in the fact that spin resonance is a quantum phenomenon and to understand the obtained results one has to firstly understand the quantum-mechanical principles of the underlying processes. Actually this is well described by the term 'spin dynamics'; spin resonances are about dynamics: spin dynamics (i.e., quantum mechanics) and molecular dynamics (i.e., classical motion). This combination is not a disadvantage but a challenge and 'spin dynamics' itself is a part of fascinating science.

Quite often I get the question: Which equation should I use to interpret my data? What should I say? Maybe that there are no closed-form recipes except of a few simple cases and that one should firstly carefully consider the quantum-mechanical properties of the molecular system ...? This answer is correct, but not much helpful. Thus, I do not offer it. Instead of that I decided to write this book. I very much hope that it offers understandable and useful answers to a variety of questions appearing in connection to spin dynamics and spin resonance phenomena. I also believe that it will help to understand the principles, which are illustrated in this book by various examples. In consequence, the readers will be able to develop their own approaches and modify the existing descriptions depending on the system upon consideration, because as per Mark Twain, "Get your facts first, then you can distort them as you please."

My great debt of thanks goes to my colleagues (the list would be very long) for their encouragement and help. I am very grateful to my
husband, Robert, and my children, Sabina, Przemek, and Karolina, who stood by me all this time. I also thank Ms. Shivani Sharma, Pan Stanford Publishing, for her assistance.

This work was partially supported by funds for science in years 2009–2013 as research project no. NN202105936 (Polish Ministry of Science and Education).

Danuta Kruk
Summer 2015