Drug Delivery and Development of Anti-HIV Microbicides

edited by
José das Neves
Bruno Sarmento
Drug Delivery and Development of Anti-HIV Microbicides
Drug Delivery and Development of Anti-HIV Microbicides

edited by
José das Neves
Bruno Sarmento
Contents

Foreword xvii
Preface xxi

1. Microbicides for the Prevention of HIV 1

Osmond J. D’Cruz and Fatih M. Uckun

1.1 Introduction 1

1.2 Antiretroviral Microbicides in Development and Mechanism of Action 2

1.2.1 Virus-Targeting Entry Inhibitors 5

1.2.1.1 C-C chemokine receptor 5 antagonists 6

1.2.1.2 Neutralizing antibodies 8

1.2.1.3 Anti-HIV carbohydrate-binding agents 9

1.2.1.4 Peptides 10

1.2.2 Reverse Transcriptase Inhibitor-Based Microbicides 11

1.2.2.1 NtRTI-based microbicide 11

1.2.2.2 NRTIs-based microbicides 12

1.2.2.3 NNRTI-based microbicides 14

1.2.3 RNA Interference-Based Microbicides 18

1.2.4 RNA-Based Aptamer Microbicides 19

1.2.5 Aptamer-siRNA-Based Chimeric Microbicides 20

1.3 Microbicide Efficacy Studies 21

1.3.1 Gel-Based Microbicides 21

1.3.2 Vaginal-Specific Microbicides 22

1.3.3 Rectal-Specific Microbicides 23

1.3.4 Vaginal versus Oral Interventions 25

1.4 Coitally Independent Delivery Systems 27
1.4.1 Intravaginal Rings 27
1.4.2 Lactobacilli Expressing Antiviral Biologics 29
1.5 Conclusions 30

2. HIV Transmission Models: Lessons Learned for Microbicide Formulation Design 55
 Pedro M. M. Mesquita and Betsy C. Herold
 2.1 Introduction 55
 2.2 Modeling Sexual Transmission 56
 2.3 In vitro Models of Microbicide Efficacy 58
 2.4 Ex vivo Challenge Models 60
 2.5 Impact of Genital Tract Secretions and Semen on Microbicide Assessments 63
 2.6 In vitro and Animal Models of Microbicide Safety 65
 2.7 Animal Models for Assessment of PK/PD 67
 2.7.1 Murine Models 67
 2.7.2 NHP Models 69
 2.8 Rationale for Co-Formulations 70
 2.9 Conclusions and Future Perspectives 74

3. Challenges in Microbicide Drug Delivery: Identifying Targets and Evolving Strategies 91
 Karolin Hijazi, Constandinos Carserides, and Charles Kelly
 3.1 Introduction 91
 3.2 HIV Transmission at Mucosal Surfaces 92
 3.3 Microbicides: Current State of the Art 94
 3.3.1 HIV Fusion 94
 3.3.2 Reverse Transcriptase 95
 3.3.3 RNase H 96
 3.3.4 Integrase 97
 3.3.5 Protease 97
 3.4 Combination Microbicides 98
 3.5 Factors Affecting Drug Distribution in Mucosal Tissues 99
 3.5.1 Drug Transport and Metabolism 99
 3.5.2 Mucosal Inflammation 102
3.6 Formulation Strategies 103
3.7 Conclusions and Future Perspectives 103

4. Safety Aspects of Topical Anti-HIV Microbicides 117

 Raina N. Fichorova

4.1 Introduction 117
4.2 Vaginal and Rectal Microbicides: Appealing but Also Finicky 118
4.3 The Birth Pangs of Topical Microbicides 120
4.4 Topical Cytokines and Biomarkers of Inflammation for Microbicide Safety Evaluation: From Dubium to Credo 121
4.5 Learning from Failed and Successful Efficacy Trials: Primum non Nocere 125
4.6 The Resident Microbiota: The Chapel Master of Mucosal Immunity 129
4.7 Pre-Clinical Models: From Cells to Function 132
4.8 Conclusions and Future Perspectives 136

5. Biophysics, Drug Transport Modeling, and Performance of Microbicides 151

 David F. Katz

5.1 Introduction 151
5.2 How Modeling Works 153
5.3 Vaginal Coating by Gels: The First Mechanistic Models for Microbicide Functioning 156
 5.3.1 Gel Rheology 156
 5.3.2 Effects of Dilution on Gel Rheology 159
 5.3.3 Intraluminal Forces Acting on a Gel 159
 5.3.4 Geometry of Gel Flow along the Lumen, Mucosal Surfaces and Ambient Fluid
 Contents 160
 5.3.5 Examples of Model Predictions for Vaginal Coating Flows 161
 5.3.5.1 Radial flow of a disk of gel: net squeezing force given 162
 5.3.5.2 Channel flow geometry: flat walls, net squeezing force given 162
5.3.5.3 Flow due to elastic local squeezing forces by vaginal walls and incorporating the dynamics of gel dilution and possible swelling 164
5.3.5.4 Models of gravity and surface tension driven intravaginal flows 166
5.4 Vaginal Coating by a Film 166
5.5 Interactions between Semen-Borne HIV Virions and Cyanovirin-N Molecules Delivered by a Gel Layer: The First Mass Transport Model of Microbicide Delivery and, Also, of HIV Interaction 168
5.6 Delivery of Dapivirine from an Intravaginal Ring to Mucosal Surfaces: The First Mass Transport Model for an Intravaginal Ring 170
5.7 Delivery of Tenofovir from a Gel Layer into the Mucosal Epithelium and Stroma: The First Biophysics-Based Compartmental Model of Microbicide Pharmacokinetics 172
5.8 Design of a Microbicide Gel Using Modeling: The First Approach 174
5.9 Discussion on Microbicides Modeling 176
5.9.1 The Next Steps in PK Modeling 178
5.9.1.1 Foci for enhanced PK modeling overall 178
5.9.1.2 Dosage form-specific improvements 181
5.9.2 Rational Microbicide Design Schemas 182
5.10 Conclusions and Future Perspectives 183

6. Dosage Forms for Microbicide Formulations: Advantages and Pitfalls 193

Viness Pillay, Pradeep Kumar, Valence M. K. Ndesendo, Yahya E. Choonara, and Lisa du Toit

6.1 Introduction 193
6.2 Rationale for the Development of Microbicide Formulations 195
6.2.1 Statement of the Problem 195
8. **Vaginal Microbicide Films**

Lisa C. Rohan and Wei Zhang

8.1 Introduction 291
8.2 Introduction to Vaginal Film Development 292
8.3 Acceptability of Vaginal Films as a Potential Microbicide Delivery System 293
8.4 Important Anatomical and Physiological Considerations for Vaginal Microbicide Films 295
 8.4.1 Vaginal Anatomy, Physiology, and Histology 296
 8.4.2 Vaginal Fluid and Microbiota 297
8.5 Vaginal Film Formulation 299
 8.5.1 Commercial Vaginal Film Products 299
 8.5.2 Polymeric Vaginal Films in Research and Development 300
 8.5.3 Vaginal Film Components 303
8.6 Scale-Up and Manufacturing of Vaginal Films 306
 8.6.1 Solvent-Casting Technique 306
 8.6.2 Hot-Melt Extrusion 308
 8.6.3 Packaging Considerations for Films 309
 8.6.3.1 Single pouch 309
 8.6.3.2 Blister card with multiple units 310
 8.6.3.3 Continuous roll dispenser 310
8.7 Vaginal Film Formulation Assessment 310
 8.7.1 Chemical and Physical Characterization 311
 8.7.2 In vitro Biocompatibility and Bioactivity Assessments 313
 8.7.3 Ex vivo Safety, Efficacy and Permeability Studies Using Human Ectocervical Explants 314
 8.7.4 In vivo Safety Evaluations Using Animal Models 315
8.8 Conclusions and Future Perspectives 317

9. **The Development of Rectal Microbicides for HIV-1 Prevention**

Ian McGowan, Charlene S. Dezzutti, and Lisa C. Rohan

9.1 Introduction 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>The Biology of Rectal HIV-1 Transmission</td>
<td>332</td>
</tr>
<tr>
<td>9.3</td>
<td>Rational for Rectal Microbicide Development</td>
<td>333</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Prevalence of Anal Sex in Various Populations</td>
<td>334</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Sexual Lubricant Use</td>
<td>335</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>Sexual lubricants and their potential for mucosal damage</td>
<td>337</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Protection of Colorectal Tissue from HIV-1 Infection in Human Tissue Models</td>
<td>339</td>
</tr>
<tr>
<td>9.4</td>
<td>Rectal Microbicide Formulation Considerations</td>
<td>341</td>
</tr>
<tr>
<td>9.5</td>
<td>Rectal Microbicide Studies</td>
<td>346</td>
</tr>
<tr>
<td>9.5.1</td>
<td>HIVNET-008</td>
<td>346</td>
</tr>
<tr>
<td>9.5.2</td>
<td>HPTN-056</td>
<td>347</td>
</tr>
<tr>
<td>9.5.3</td>
<td>RMP-01</td>
<td>348</td>
</tr>
<tr>
<td>9.5.4</td>
<td>RMP-02/MTN-006</td>
<td>348</td>
</tr>
<tr>
<td>9.5.5</td>
<td>Project Gel</td>
<td>349</td>
</tr>
<tr>
<td>9.5.6</td>
<td>The CHARM Program</td>
<td>349</td>
</tr>
<tr>
<td>9.6</td>
<td>Concepts in the Design of Rectal Microbicide Studies</td>
<td>350</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Safety</td>
<td>350</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Acceptability</td>
<td>352</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Adherence</td>
<td>353</td>
</tr>
<tr>
<td>9.6.4</td>
<td>Pharmacokinetics</td>
<td>354</td>
</tr>
<tr>
<td>9.6.5</td>
<td>Pharmacodynamics</td>
<td>357</td>
</tr>
<tr>
<td>9.7</td>
<td>Rectal Microbicide Advocacy</td>
<td>359</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusions and Future Perspectives</td>
<td>359</td>
</tr>
</tbody>
</table>

10. **Design of Stimuli-Sensitive Microbicide Formulations** 377

Chi H. Lee and Namita Giri

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>377</td>
</tr>
<tr>
<td>10.2</td>
<td>Classification of Stimuli</td>
<td>378</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Chemical Stimuli</td>
<td>380</td>
</tr>
<tr>
<td>10.2.1.1</td>
<td>pH</td>
<td>380</td>
</tr>
<tr>
<td>10.2.1.2</td>
<td>Ionic strength/electrochemical</td>
<td>382</td>
</tr>
<tr>
<td>10.2.1.3</td>
<td>Redox sensitive delivery systems</td>
<td>383</td>
</tr>
</tbody>
</table>
10.2.2 Physical Stimuli

10.2.2.1 Temperature 384
10.2.2.2 Radiation 384
10.2.2.3 Magnetic fields 385
10.2.2.4 Ultrasound 386

10.2.3 Biological Stimuli 386

10.3 Stimuli in the Vagina: Physiological/Histological Considerations

10.3.1 pH of Vaginal Fluids 387
10.3.2 Enzymes in the Vagina 388
10.3.3 Electric/Biochemical Stimulus 390

10.4 Stimuli-Based Intravaginal Delivery of Microbicides

10.4.1 Gels 391
10.4.2 Nanoparticles 392
 10.4.2.1 Nanoparticles in general 392
 10.4.2.2 Eudragit® S 100 as a nanoparticle polymer base 394
10.4.3 Rings 395
10.4.4 Films 395

10.5 Conclusions and Future Perspectives 395

11. Nanotechnology-Based Systems for Microbicide Development

Rute Nunes, Carole Sousa, Bruno Sarmento, and José das Neves

11.1 Introduction 415
11.2 Limitations of Microbicide Products Currently under Development 416
11.3 Why Nanotechnology-Based Microbicides? Potential and Perils 418
11.4 Nanosystems Presenting Intrinsic Activity against HIV/Competing with the Virus for Host Targets 420
11.5 Nanosystems Acting as Carriers for Microbicide Agents 423
 11.5.1 Polymeric-Based Nanocarriers 423
 11.5.2 Lipid-Based Nanocarriers 432
11.6 Mucoadhesive or Mucus-Penetrating Microbicide Nanosystems? 434
11.7 Nanotechnology-Based Rectal Microbicides 441
11.8 Conclusions and Future Perspectives 442

12. Electrospun Fibers for Microbicide Drug Delivery 459

Cameron Ball and Kim A. Woodrow

12.1 Introduction 459
12.2 Electrospinning Technology 461
12.3 Motivating the Use of Electrospun Fibers as a Dosage Form for Anti-HIV Microbicides 464
12.4 Case Studies for Applying Electrospinning to Anti-HIV Microbicides 470
12.4.1 Semen-Responsive Cellulose Acetate Phthalate Fibers for Tenofovir and Etravirine Release 470
12.4.2 Poly(Ethylene Oxide) and Poly(Lactic Acid) Fibers for Maraviroc, Zidovudine and Glycerol Monolaurate Release 474
12.5 Proposed Characterization Methods for Electrospun Anti-HIV Microbicides 483
12.5.1 Characterization of Polymer Solution Properties 484
12.5.2 Characterization of Physical, Mechanical, and Rheological Properties 485
12.5.3 Characterization of Drug Content, Drug/Polymer Physical States and Drug Uniformity 489
12.5.4 Characterization of Drug Release, Biological Function, and Toxicity 491
12.6 Producing Electrospun Materials at Scale and Technology Translation 492
12.6.1 Materials and Capital Investments for Fiber-Based Microbicides 493
12.6.2 Manufacturing Capability 494
12.6.2.1 Multi-nozzle electrospinning 495
12.6.2.2 Multi-jet nozzleless electrospinning 497
12.6.3 Commercialization Plan 498
12.7 Conclusions and Future Perspectives 499

13. Modified Microbiota for Microbicide Drug Delivery 509
Luca Vangelista and Massimiliano Secchi

13.1 Introduction 509
13.2 Human Microbiota 510
13.3 Engineering of Commensal Bacteria and Anti-HIV-1 Strategies 511
 13.3.1 The Road to Anti-HIV-1 Live Microbicide Development 511
 13.3.2 Components for Microbiota Engineering and Microbicide Delivery 522
13.4 In vivo Applications and Safety Concerns 524
13.5 Conclusions and Future Perspectives 526

David R. Friend, Brid Devlin, and Christopher Gilmour

14.1 Introduction 535
14.2 Tenofovir 1% Gel 536
 14.2.1 Scale-Up and Manufacturing 536
 14.2.2 Affordability 540
14.3 Dapivirine Vaginal Ring 541
 14.3.1 Scale-Up and Manufacturing 541
 14.3.2 Affordability 544
14.4 Intellectual Property and Microbicides 545
14.5 Conclusions and Future Perspectives 546

15. Regulatory Issues Pertaining to Microbicide Development 549
Linda Arterburn, Lisa Carlton, and Zeda Rosenberg

15.1 Introduction 549
15.2 Product Development Considerations 551
15.3 Non-Clinical Considerations 553
15.4 Clinical Development Considerations 556
15.5 Strategic Regulatory Considerations 560
15.6 Conclusions and Future Perspectives 564

16. Socioeconomic and Behavioral Factors Influencing Choice, Adherence, and Success of Microbicide Formulations 569

Elizabeth Tolley, Barbara Friedland, Mitzy Gafos, Rivet Amico, Lut Van Damme, Cynthia Woodsong, Kathleen MacQueen, Leila Mansoor, and Sheena McCormack

16.1 Introduction 569
16.2 Context of Adherence 573
16.3 It Is All about...Adherence 574
 16.3.1 Formulation and Delivery 574
 16.3.2 Product-Related Side Effects 576
 16.3.3 Product Use Changes over Time 577
16.4 Clinical Trial Settings 578
 16.4.1 Framing Adherence 578
 16.4.2 Researcher versus Individual Benefit 579
 16.4.3 Beyond Adherence 580
16.5 Whose Use Is It? A Focus on Study Population Characteristics 581
 16.5.1 Trials in Female Sex Workers 582
 16.5.2 The Shift Away from Sex Worker Cohorts 583
 16.5.3 Sexual Risk, HIV Risk Perception, and Motivations for Trial Participation in General Populations 584
 16.5.4 Whose Use Is Missing? 588
16.6 Socio-Cultural Considerations 589
 16.6.1 Sexual Behavior 589
 16.6.2 Vaginal Practices 592
 16.6.3 Sexual Pleasure 593
 16.6.4 Gender Dynamics 595
16.7 The Broader Healthcare Systems Context 596
 16.7.1 Policy-Level Decisions about Access 597
Contents

16.7.2 Cost and Access 598
16.8 Conclusions and Future Perspectives 601

Appendix 629
Index 655
Prevention of sexual HIV transmission remains the cornerstone to bend the curb of the pandemic. Campaigns to promote behavioral changes, including avoidance of high-risk sexual practices and consistent condom use, remain key, but they need to be supplemented with biomedical interventions [1]. Treating the seropositive partner is an efficacious means of preventing HIV transmission in stable relationships [2]. If this option is not available, pre-exposure prophylaxis (PrEP) of non-infected at risk individuals with antiviral drugs, either systemically or locally, could be an alternative. Clearly, the local PrEP option, referred to as “microbicides,” seems preferable (especially in order to avoid systemic exposure to drugs) but its development over two decades has been an intellectual and logistical challenge [3].

As explained in Chapter 1, the field of microbicides has moved from simple broad-spectrum microbicidal-virucidal products (such as nonoxynol-9) to specific anti-HIV drugs. The first and yet only successful microbicide clinical trial (CAPRISA 004), using the nucleotide analogue tenofovir as a vaginal gel, showed significant protection against both HIV-1 and human herpes simplex virus type 2 (HSV-2), a known co-factor for HIV acquisition. This success has boosted the search for locally applicable highly active antivirals of various classes and combinations thereof. This endeavor is currently pursued by several international organizations, e.g., the European program CHAARM (“Combined Highly Active Anti-Retroviral Microbicides,” more information available at http://chaarm.eu/) and the International Partnership for Microbicides (IPM, more information available at http://www.ipmglobal.org/), amongst others. Since HIV transmission is linked to other sexually transmitted infections (STIs), research on “Multiple Purpose Technology” (MPT) to prevent HIV, other STI and pregnancy is a new logical trend.

Besides a good (combination of) active pharmaceutical ingredient(s) (API), however, suitable drug delivery (i.e., formulation)
is essential for success: The API has to be delivered in a format that is affordable, easy to use, culturally adapted and, of course, able to release the API at the right time and place, i.e., vaginally or rectally. Formulation issues are often underestimated by "basic" scientists performing in vitro research, but also by clinicians, who generally only think about the API, when they evaluate success or failure. In that sense, this book is revealing as it provides a very thorough and state-of-the-art overview mainly from the perspective of the "formulators," but clearly intended to inform all scientists and clinicians who are involved in microbicide development.

The biological aspects of transmission, modeling, and the challenges for drug delivery are discussed in Chapters 2 and 3, providing a good basis to frame the formulation efforts, explained throughout this book. In Chapter 4, safety assessment of microbicide formulations is addressed. The importance of this aspect cannot be over-emphasized, in view of the early failures of microbicide clinical trials, due to a low therapeutic index. The biophysical aspects of drug transport and microbicides formulation are then highlighted in Chapter 5. Chapter 6 on advantages and pitfalls of microbicide formulation provides a general overview on requirements of a good microbicide formulation, whereas several specific formulations are being discussed in the next chapters.

Traditional vaginal gels have been used in most microbicide trials until now, but they have several disadvantages such as messiness and coital dependency (i.e., need to be applied shortly before intercourse). Vaginal rings (Chapter 7) offer a first alternative, as they provide sustained local delivery over several weeks with low systemic exposure, as well as the ability to deliver multiple APIs. They are easy to use and therefore may also improve acceptability and adherence. Rings with the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine or/and maraviroc (a CCR5 inhibitor) are at the forefront of clinical trials today. Vaginal films (Chapter 8) constitute another format with a possibly higher acceptance than gels, since they are a convenient, portable, dry solid dosage form that dissolves rapidly once in contact with the vaginal fluid. Vaginal films containing some of the non-specific candidate microbicides have been succeeded by more potent antiviral drugs, including the nucleoside analogue zidovudine and the non-nucleosides IQP0528 and dapivirine, the latter being prepared for a clinical trial soon.
Chapter 9 attracts our attention to the fact that not only homosexual but also a lot of heterosexual transmission occurs via anal intercourse. Obviously, the challenges to develop an effective microbicide for anal use are even bigger than those associated with vaginal use, in view of the (much) larger area to protect and the higher susceptibility of the rectal mucosa both to HIV transmission and to possible toxic effects of applied products. Nevertheless, a number of candidate rectal microbicides show anti-HIV activity in colorectal explants, and encouraging macaque rectal protection trials (with tenofovir) have already been reported. At the same time, human Phase 1 clinical trials have been performed, are ongoing, or are being prepared.

The next four chapters discuss further innovative aspects of formulation. Chapter 10 explains how gels, rings, films, and nanoparticles could be conceived to respond to stimuli associated with the vaginal environment and with intercourse in order to release their antiviral API with appropriate timing. Some of the most advanced products are based on Eudragit® S 100, a pH-sensitive anionic copolymer, which can be used for co-formulation and timely release of combinations of hydrophilic and hydrophobic APIs (e.g., tenofovir and dapivirine). In Chapter 11, polymeric nanoparticles (NPs) are presented as a delivery system for APIs, with potentially better stability of the encapsulated drug, sustained release, lower toxicity, and more even distribution as compared to traditional gel formulations. Similarly, electrospun fibers (Chapter 12) have already been shown to incorporate and deliver a variety of anti-HIV compounds, including tenofovir, zidovudine, maravir, and NNRTI. These and other APIs could effectively be combined into composites or nanostructured carriers, such as layered mats or coaxial fibers, and be made responsive to relevant stimuli such as pH changes and vaginal enzymes, among others. In Chapter 13, genetic engineering of commensal Lactobacilli (part of the natural vaginal defense) to deliver anti-HIV molecules is discussed. Thus long-lasting protection might be provided at low cost, but this approach, of course, faces particular regulatory challenges.

The final chapters put all this work into a larger societal context, including affordability and intellectual property issues (Chapter 14), regulatory issues (Chapter 15), and behavioral as
well as socioeconomic factors (Chapter 16). Basic and clinical scientists should be well aware of those aspects during the development of their candidate microbicides, as those will define whether or not a product that has shown efficacy in clinical trials will ultimately be used by the population who needs it.

In summary, the present book provides a reference for all those who want to be informed on the state-of-the-art of microbicide formulation, starting from basic science over technicalities to the wider social context. All contributors hope that their work will inspire the scientific community joining forces to develop an effective, safe, and affordable microbicide for all those who need it.

Guido Vanham, MD, PhD
Virology Unit, Institute of Tropical Medicine
Antwerpen, Belgium
June 2014

References

Preface

The worldwide impact of HIV/AIDS is well recognized. In the absence of a cure, pre-exposure prophylaxis (PrEP) represents a cornerstone in the battle against HIV infection. Different strategies were shown to be useful in slowing down the spread of the virus and put into practice, while others are being actively developed. One promising approach comprises the use of microbicides (also referred to in recent years as topical PrEP), which have been traditionally defined as vaginal and/or rectal products intended to be used around the time of intercourse in order to prevent the sexual transmission of HIV and, potentially, other pathogens. In 2010, the CAPRISA 004 clinical trial testing a gel containing 1% tenofovir provided proof-of-concept that microbicides may prevent male-to-female vaginal HIV transmission, even though observed protection was only partial. There was renewed interest and significant development in the field ever since, and other products also advanced significantly toward clinical testing. Even though follow-up studies for gels containing tenofovir did not produce so far the expected confirmatory outcomes, researchers and advocrators are now kept in suspense while waiting for the results of two ongoing Phase 3 clinical trials testing a dapivirine vaginal ring, expected to be released in late 2014 or early 2015.

Once a somewhat neglected topic, it is now accepted that specific development of drug dosage forms and/or drug delivery systems is an indispensable aspect for future microbicides success. Different groups strived over the last decade to optimize the technological, biophysical, and safety performance of traditional dosage forms, particularly gels, tablets, and suppositories (or ovules), in order to fulfill the specificities of microbicides use, without neglecting the preferences of users and affordability issues. Moreover, other formulation approaches, such as vaginal rings and films, nanotechnology-based systems, stimuli-sensitive formulations, and targeted delivery systems, among others, have been proposed and are currently undergoing pre-clinical or even clinical testing.
We hope this book will provide a thorough and critical overview of current aspects and developments, as well as new trends, in the formulation and drug delivery concerning anti-HIV microbicides by leading scientists in the field. Additionally, the book discusses pertinent large-scale production, affordability, and regulatory aspects, as well as socioeconomic issues related to the subject.

Finally, we would like to express our deepest gratitude to all the contributors for taking the time and expertise to make this book real, as well as to everyone at Pan Stanford Publishing who assisted in the production of the book. Also, a special word of appreciation is due to Guido Vanham for kindly accepting to write the Foreword.

José das Neves
Bruno Sarmento
August 2014
Porto, Portugal