Notes on the Contributors

Dr. Paris is a physician with remarkable volunteering experience in international settings, including India and Southeast Asia, where he has travelled repeatedly, from small villages to busy metropolitan areas, to provide health services to sick children. These activities as well as his professional interest in neurological disorders nudged him toward studying the impact of new technologies on improving the sensibility and sensitivity of current diagnostic tests and the efficacy of future therapeutic strategies. He is currently a fellow in the emergency department of St. Thomas’ Hospital, London. He can be reached at Marco.Paris@gstt.nhs.uk.

Dr. Nicassio is a neurosurgeon with extensive experience, including previous working or honorary appointments in the National Hospital for Neurology and Neurosurgery (NHNN), London, and Addenbrooke’s Hospital, Cambridge; Johns Hopkins Hospital, Baltimore, and Barrow Neurological Institute (BNI), Phoenix; and continental Europe. His keen interest in microsurgical anatomy of the brain and spine led him to join forces with prominent colleagues, including Dr. Ganau, co-editor of this book, to provide young students and residents with an Italian edition of *Rhoton’s Cranial Anatomy and Surgical Approaches*, one of the most detailed books unveiling the anatomy of the human central nervous system. Dr. Nicassio can be reached at Nicola.Nicassio@kch.nhs.uk.

Dr. Ligarotti graduated in medicine from the University of Milan (Italy), with a research thesis written in collaboration with the National Institute for Neurology “C. Besta.” Currently he is completing his neurosurgical training as senior resident at the General Hospital ”Niguarda” in Milan. Since 2003 he is in active service as
medical officer of the Italian Air Force. Thus by working both in the neurosurgery department of the Military General Hospital “Celio” in Rome (Italy) as well as in several battlefields (Iraq and Afghanistan), he has forged a strong experience in neurotraumatology. His research activity led him to the International Research Base Camp “Concordia” (South Pole), where he spent the Antarctic summer of 2006–2007 (PNRA XXVII) and started developing his interest in the field of nano-innovation and its possible application in vascular and oncological neurosurgery. He can be reached at gianfranco.ligarotti@aeronautica.difesa.it.

Dr. Bosco graduated in material science and engineering from the University of Padua (Italy), working on elasticity and chirality in liquid crystals. He then defended his PhD in physics and chemistry of biological systems at the International School for Advanced Studies (SISSA) in Trieste (Italy) with a thesis on the elastic properties of nucleic acids, elucidated from both an experimental and a computational-theoretical perspective. During this period he forged a strong experience in computational simulations and bio-modeling of molecules and mastered experimental single-molecule techniques such as atomic force microscopy and optical tweezers. He currently holds a postdoc position in the NanoInnovation Lab at Elettra Synchrotron Radiation Facility in Trieste, supported by a grant from the Italian Association for Cancer Research (AIRC) and aimed at optimizing the fabrication of DNA-based biosensors for early-stage detection of markers involved in the development of tumors. He can be reached at alessandro.bosco@elettra.eu.

Dr. Parisse started his career as a physicist trained in surface physics and then obtained a PhD in physics from the University of L’ Aquila (Italy), gaining further experience in the growth and characterization of molecular thin films for organic electronics applications, through both electron spectroscopy and scanning probe microscopy techniques. He subsequently moved his interests toward the self-assembling of biological molecules on surfaces, in crowded and confined environments, to elucidate their structure and functionality in living systems and to realize novel devices for in vitro proteomics. He is currently postdoctoral fellow in the
Elettra–Sincrotrone Trieste Unit of the National Interuniversity Consortium of Materials Science and Technology (INSTM Trieste Italy), where he is exploiting atomic force microscopy (AFM) and AFM-nanolithography to study enzymatic reactions on single DNA molecules and DNA nanostructures. Author of more than 20 papers in peer-reviewed international journals and several presentations at international conferences, he can be reached at pietro.parisse@elettra.eu.

Dr. Casalis, a physicist from the University of Pisa (Italy), with a PhD in condensed matter physics from the University of Trieste (Italy), is currently senior scientist at the Italian Synchrotron Radiation Facility, Elettra, where she leads the NanoInnovation Laboratory.

She started her postdoc tenure as a beamline scientist at Elettra, before being appointed as visiting scientist (2000–2002) at Princeton University (NJ, USA), where she worked in the group of Prof. Giacinto Scoles, using surface diffraction techniques to study thin films of organic molecules relevant to organic electronics applications. Back in Trieste, she focused on the application of atomic force microscopy to study interactions between biological molecules at surfaces and to design novel biosensors.

She sits in the board of experts of the PhD program in nanotechnology at the University of Trieste and of the PhD program in neurobiology at the International School for Advanced Studies (SISSA) in Trieste. She can be reached at loredana.casalis@elettra.trieste.it.

Dr. Israel Foroni graduated in theoretical nuclear physics from the University of Padua (Italy). After his doctoral degree he spent several years abroad (1982–1987) with highly prestigious scholarships at the Holt Radium Institute in Manchester and Hammersmith Hospital in London (U.K.), the Rambam HealthCare Campus in Haifa (Israel), and the National Cancer Institute in Bethesda (USA). Since 1988 he is working in the neurosurgical department of the University Hospital in Verona (Italy), where he cofounded the Minimally Invasive Neurosurgery Unit and became director of the Surgical Robotics Lab. In clinics he is primarily responsible for image processing and stereotactic treatment planning of deep-brain stimulation, gamma knife radiosurgery, and hyperthermia procedures, while his teaching
and research activities as principal investigator in several international research consortia mainly revolve around intraoperative monitoring, vascular connectivity reconstruction, graphical models for awake neurosurgical procedures, prediction signals and models for comatose patients, microrobots, and nanopharmacology. He can be reached at foroni@bwh.harvard.edu.

Prof. Ambu graduated in medicine from the University of Cagliari (Italy), where he also pursued a specialization in pathology, with a subsequent fellowship in immunohistochemistry at the University of Leuven (Belgium). Back in Sardinia he started his clinical activity in the Institute of Pathology at the Department of Surgical Science of the San Giovanni Hospital in Cagliari, before being appointed to his first teaching position in the School of Medicine. Working in the group led by Prof. Gavino Faa, Prof. Ambu forged, along the years, a strong expertise in advanced diagnostic and prognostic techniques, deepening the understanding of both genetic and transcriptional bases of cancer and improving the phenotype classification of degenerative diseases and their neoplastic transformation. An international member of several scientific societies, Prof. Ambu currently sits in the board of experts of the PhD program in biomedical engineering at the University of Cagliari. He can be reached at amburo@unica.it.

Dr. Prisco graduated in medicine in 2007 and specialized in anesthetics, intensive care, and hyperbaric medicine in 2012 from the University of Trieste (Italy). She was appointed research fellow at the Coma Science Group in Liège (Belgium), before moving to U.K., where she started working as an anesthetist and intensivist at the Neurosurgical and General Intensive Care Unit of the University College Hospital in London and more recently at the Neurosciences Critical Care Unit of the Addenbrookes Hospital in Cambridge. A Singularity University alumna, she also participated in several highly competitive graduate programs related to space medicine (European Space Agency), brain plasticity (Neuroscience Department, Utrecht University), and international bioethics (Harvard University). In 2013 she obtained a master in science degree in pediatric intensive care medicine at Catholic
University in Rome (Italy). Chair-elect of the NEXT Committee of the European Society of Intensive Care Medicine, she can be reached at lara.prisco@singularityu.org.

Laura Ganau, although still a student of medicine at the University of Cagliari (Italy), has already brilliantly participated in several research activities mainly focused on neuroscience and related clinical fields. Her continuous efforts to play an active role in those projects, and to increase her promising amount of knowledge in such a challenging area of studies, allowed her to be among the recipients of important scholarships and grants from the Italian Ministry of Foreign Affairs, and even the US National Institute for Neurological Disorders and Stroke (Grant No. 1R13NS077709-01). A regular attendee of international scientific meetings (AANS/CNS, IBIA, AsMA, etc.), and a presenter of award-winning posters (i.e., Keystone Symposia in Molecular Biology), she has authored several articles published in peer-reviewed journals, as well as some book chapters. She can be reached at lolly26it@yahoo.it.

Sarah Rouse Janosik, PhD, JD, is senior counsel, intellectual property (IP) and litigation, at Amgen Inc. Dr. Rouse is a named inventor on various patents directed toward nanomedicine. Her research led to the formation of Keystone Nano, a company providing platform technologies for nanomedicines and therapeutics. She received dual undergraduate degrees from the South Dakota School of Mines and Technology and her PhD in materials science and engineering from Pennsylvania State University (PSU). Her doctoral research focused on the synthesis, dispersion, and characterization of nanocomposite particles for bioimaging, drug delivery, and gene therapy. While at PSU, Dr. Rouse was named a National Science Foundation Fellow. She received her JD and certificate in IP from the DePaul University College of Law. She was the IP counsel at Onyx Pharmaceuticals until its acquisition by Amgen in 2013, and represented Onyx in the IP diligence in that transaction. Dr. Rouse practiced at law firms in the U.S. and Brazil and prior to that interned at the World Intellectual Property Organization (WIPO) Coordination Office at the United Nations.
Wim Helwegen holds a master of laws degree in international and European law from Tilburg University the Netherlands and a doctorate in commercial law from the University of Helsinki Finland. He is specialized in the interaction of patent law and advanced technologies, such as nanotechnology and biotechnology. After having served as a court clerk at a court of appeals, Helwegen wrote a doctoral dissertation on patents in the nanotechnology sector. Currently, he works as a legal advisor in IP and commercial contracts for law firms, companies and academic institutions.

Efrat Kasznik is an IP valuation and strategy expert with 20 years of consulting experience. She is the founder and president of Foresight Valuation Group, a Silicon Valley–based firm providing IP consulting and startup advisory services. She is also a lecturer on IP management at the Stanford Graduate School of Business. Kasznik specializes in analyzing IP for a range of purposes, including mergers and acquisitions, financial reporting, technology commercialization, transfer pricing, and litigation damages. She is listed on the IAM 300 list of leading IP strategists and is a member of the leadership committee of the Licensing Executives Society (LES) U.S.-Canada, High Tech Sector. Kasznik has been involved as a CFO, co-founder, and adviser to several start-ups and investment funds in the U.S. and Europe. She holds an MBA from UC Berkeley, Haas School of Business, and a BA in accounting and economics from Hebrew University, Jerusalem.
Index

Abraxane 93
Accounting Standards Codification (ASC) 153–154, 158, 161
AFM, see atomic force microscopy
AFM probes 39
antibiotic resistance 72
antibodies 32–36, 39–41, 83
antigens 34–35, 39, 41, 94–95
artificial cells 71
artificial nanomotors 70
ASC, see Accounting Standards Codification
assay 23, 33–35, 37
sandwich 35–36
assets, nanotechnology-related 184
atomic force microscopy (AFM) 24, 30, 39, 62
Aurimmune 92

β-TCP, see β-tricalcium phosphate
β-tricalcium phosphate (β-TCP) 63–64
bacteria 72
Bayh–Dole Act 164
Berne Convention 145–146
biological barriers 9, 81, 83, 93
biological interfaces 74
biological molecules 67
biological motors 70
biomaterials 60
biomolecules 12, 27–29, 32, 45
biotechnological applications 61
consumer 23
biotechnology 26, 93, 165, 177
block copolymer micelles 88
blood 14, 62, 71–72
blood vessels 48, 71, 82–83
blood–brain barrier 9, 82–83
bone formation 63
bones 63
brain 14, 74
brain–computer interfaces 74–75
brain–machine interfaces 73
cancer 21–22, 42, 49, 51, 81–82, 90, 93
stomach 86, 88
cancer cell imaging 44
cancer cells 44–45, 50, 84, 92
cancer therapy 12
cancer treatment 90, 93
carbon dioxide 71–72
carbon nanotubes (CNTs) 44–45, 66, 74

cells
healthy 92–93
single 7, 43, 47, 68
stem 50, 185
circulating tumor cells (CTCs) 50
CNTs, see carbon nanotubes
combined nanomedicine treatments 99
Index

consumer price index (CPI) 181
coronary stenting 64
cost-sharing agreements 160
CPI, see consumer price index
CTCs, see circulating tumor cells

DDI, see DNA-directed immobilization
dendrimers 10, 84, 89
devices
 implantable 12, 46–47, 74
 microtechnological 24
diagnostics
 clinical 7, 42
 in vitro 41–45
 in vivo 23, 41, 46–47
dip-pen nanolithography (DPN) 24, 29–30
disclosure 138, 140
diseases 3, 5–6, 11, 16, 21, 23, 42, 75, 81, 111
DNA 22–23, 32–33, 40, 44, 70
DNA-directed immobilization (DDI) 34, 40–41
DNA microarray technology 40
doxorubicin 87–88, 90
DPN, see dip-pen nanolithography
drug delivery 10–11, 23, 48, 89, 92, 99, 112
drug resistance 84

EGFR, see epidermal growth factor receptor
electron-beam lithography 25–26
ELISA, see enzyme-linked immunosorbent assay
ELISPOT, see enzyme-linked immunospot assay
emulsions 85–86, 88
enzyme-linked immunosorbent assay (ELISA) 8, 34–35, 41
enzyme-linked immunospot assay (ELISPOT) 35–36
enzymes 33–34, 40, 43, 71–72
epidermal growth factor receptor (EGFR) 43, 50
epidural fibrosis 65–66
ethics 111–112, 114, 116–117

fair market value (FMV) 151, 159, 179
FMV, see fair market value

GAAP, see generally accepted accounting principles
generally accepted accounting principles (GAAP) 153
genes 49, 65, 71, 90
genetech 112–113

glucose 44, 47, 71–72
gold nanoparticles 91–92
gold nanorods 92
gold nanoshells 91–92
growth factors 12–13

health 98, 111, 122, 125, 172–173
healthcare spending 4
healthcare systems 4
HIV
 see human immunodeficiency virus
 transmission of 89
human immunodeficiency virus (HIV) 86, 89

IAM, see intellectual asset management
immune responses 94
immunosignal 39
implants 14, 75
infectious diseases 81–82
Index

influenza 86
innovations
 nanotechnology-based 183, 204
 nanotechnology-related 170
intellectual asset management (IAM) 152, 163
intellectual property evaluation 165–166
intellectual property rights (IPRs) 135–136, 138, 140, 142, 144, 146, 148–149, 175
intellectual property valuation 151
invention, nanotechnology-related 186
IP, see intellectual property
IPRs, see intellectual property rights
joint ventures 164–165
leishmaniasis 82, 95
life expectancy 185, 191, 194, 199
Lipo-Dox 87
liposomes 9–10, 12, 84, 86–87, 126
lithographic techniques 24–25, 27
lithography, soft 26–27
litigation 142, 151–152, 155, 165–166, 179
litigation damages 155, 160
magnetic nanoparticles 93
magnetic resonance imaging (MRI) 23, 45–46, 48–49
mass transport 38
medical products 124, 126, 128
medication tolerance 92–93
medicinal products 126
medicine 4–6, 14, 16, 21, 75, 111, 128
metastases 47, 50
micelles 9–10, 84, 86, 88
microbivores 71–73
microchips 74
microcontact printing 24, 27–28
microelectromechanical systems 75
microfabrication 25–26
microfluidics 23, 27, 45
micronanoparticle vaccine delivery 95
miniaturization 22–24, 40–42, 47
MRI, see magnetic resonance imaging
nanobead vaccines 95
nanobeads 95
nanocomposites 62
nanocontact printing 27, 29
nanodevices 41, 66, 71, 74, 120
nanodrugs 10–12, 114
nanoemulsions 9, 11, 85–86
nanoenabled therapeutics 120, 123, 126–128
nanoethics 111–112, 114, 116
nanoformulations 82, 84–85, 87, 89, 91, 93, 95
nanofuture 111–112
nanogels 88–89
nanografting 24, 30–31
nanoknives 66–67
nanomedical-based products 120–121
nanomedicine, regulation of 124–127
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nanomedicine patents</td>
<td>97</td>
</tr>
<tr>
<td>nanomedicine products</td>
<td>97–99</td>
</tr>
<tr>
<td>nanomedicine publications</td>
<td>96</td>
</tr>
<tr>
<td>nanomedicine research</td>
<td>16–17</td>
</tr>
<tr>
<td>nanoparticle suspensions</td>
<td>120–121</td>
</tr>
<tr>
<td>nanoparticles</td>
<td></td>
</tr>
<tr>
<td>chitosan</td>
<td>95</td>
</tr>
<tr>
<td>functionalized</td>
<td>48, 85</td>
</tr>
<tr>
<td>nanopores</td>
<td>9</td>
</tr>
<tr>
<td>nanorobotics</td>
<td>69, 71</td>
</tr>
<tr>
<td>nanorobots</td>
<td>5, 69–70</td>
</tr>
<tr>
<td>nanoshells</td>
<td>91–92</td>
</tr>
<tr>
<td>nanosurgery</td>
<td></td>
</tr>
<tr>
<td>nanopores</td>
<td>9</td>
</tr>
<tr>
<td>nanotechnology-based paint</td>
<td>183</td>
</tr>
<tr>
<td>nanotechnology-based products</td>
<td>119, 126</td>
</tr>
<tr>
<td>nanotechnology commercialization</td>
<td>169–170, 172, 176</td>
</tr>
<tr>
<td>nanotechnology concepts</td>
<td>123</td>
</tr>
<tr>
<td>nanotechnology-derived medical solutions</td>
<td>6</td>
</tr>
<tr>
<td>nanotechnology development</td>
<td>170</td>
</tr>
<tr>
<td>nanotechnology innovations, commercialization of</td>
<td>169–175</td>
</tr>
<tr>
<td>nanotechnology IP holders</td>
<td>163</td>
</tr>
<tr>
<td>nanotechnology IP portfolio</td>
<td>163</td>
</tr>
<tr>
<td>nanotechnology patents</td>
<td>156</td>
</tr>
<tr>
<td>nanotechnology research</td>
<td>119, 125, 177</td>
</tr>
<tr>
<td>nanotechnology standardization</td>
<td>123, 128</td>
</tr>
<tr>
<td>nanotechnology standards</td>
<td>173</td>
</tr>
<tr>
<td>nanotechnology valorization</td>
<td>175</td>
</tr>
<tr>
<td>nanotherapeutics</td>
<td>81–84, 86, 88, 90, 92–94, 96–99</td>
</tr>
<tr>
<td>nanotweezers</td>
<td>66</td>
</tr>
<tr>
<td>nanovaccines</td>
<td>81–82, 95–96</td>
</tr>
<tr>
<td>navigating patent thickets</td>
<td>165</td>
</tr>
<tr>
<td>net present value (NPV)</td>
<td>153</td>
</tr>
<tr>
<td>neurosciences</td>
<td>75</td>
</tr>
<tr>
<td>neurosurgery</td>
<td>74</td>
</tr>
<tr>
<td>neurosurgical procedures</td>
<td>65</td>
</tr>
<tr>
<td>net present value (NPV), see net present value</td>
<td></td>
</tr>
<tr>
<td>optical tweezers</td>
<td>66–67</td>
</tr>
<tr>
<td>oxygen</td>
<td>71–72</td>
</tr>
<tr>
<td>paclitaxel</td>
<td>88, 90, 93</td>
</tr>
<tr>
<td>patent aggregators</td>
<td>155</td>
</tr>
<tr>
<td>patent donations</td>
<td>151</td>
</tr>
<tr>
<td>patent evaluation</td>
<td>176, 184</td>
</tr>
<tr>
<td>patent infringement</td>
<td>143, 151, 155</td>
</tr>
<tr>
<td>patent infringement damages</td>
<td>156–157</td>
</tr>
<tr>
<td>patent infringement litigations</td>
<td>156</td>
</tr>
<tr>
<td>patent lawsuits</td>
<td>140</td>
</tr>
<tr>
<td>patent litigation</td>
<td>155–156, 165</td>
</tr>
<tr>
<td>patent pooling</td>
<td>184</td>
</tr>
<tr>
<td>patent protection</td>
<td>149</td>
</tr>
<tr>
<td>patent relevance</td>
<td>187–188, 191, 196, 200</td>
</tr>
<tr>
<td>Patent Term Extension</td>
<td>136</td>
</tr>
<tr>
<td>patent thickets, resolving</td>
<td>165</td>
</tr>
<tr>
<td>patentability</td>
<td>137–138</td>
</tr>
<tr>
<td>patents</td>
<td></td>
</tr>
<tr>
<td>nanotech</td>
<td>184</td>
</tr>
<tr>
<td>pharmaceutical</td>
<td>136</td>
</tr>
<tr>
<td>pathologic removal of</td>
<td>73</td>
</tr>
<tr>
<td>PCU, see poly(carbonate-urea)urethane</td>
<td></td>
</tr>
<tr>
<td>PEG, see polyethylene glycol</td>
<td></td>
</tr>
<tr>
<td>PEGylation</td>
<td>90</td>
</tr>
<tr>
<td>peptides</td>
<td>10, 32, 34</td>
</tr>
<tr>
<td>PET, see positron emission tomography</td>
<td></td>
</tr>
<tr>
<td>pharmacokinetics</td>
<td>83–84, 88</td>
</tr>
</tbody>
</table>
photodamage 67
photodiodes 30-31
photolithography 24-25, 27
photomask 25-26
photosensitizer pyropheophorbide a (PPa) 44, 158
platelet adhesion 61
poly(carbonate-urea)urethane (PCU) 61
polyethylene glycol (PEG) 10-11, 90
polyhedral oligomeric silsesquioxane (POSS) 60-61
polyhedral oligomeric silsesquioxane-poly(carbonate-urea) urethane (POSS-PCU) 61
polymer conjugates 90
polymeric nanoparticles 90-91
polymers 11, 28, 60, 84, 88, 90
safety, human 186, 203-204
SAMS, see self-assembled monolayers
self-assembled monolayers (SAMs) 27, 31-32, 41
semiconductor industry 165
sensors 14, 37, 46-47, 92
silicon nanotweezers (SNTs) 67-68
single-cell analyses 42-43
single-walled carbon nanotubes (SWCNTs) 44
SNTs, see silicon nanotweezers
solid tumors 11, 87
stent thrombosis, late 64-65
stents, drug-eluting 64
surgical microscopes 69
SWCNTs, see single-walled carbon nanotubes
technology-based intangible assets 154
technology factor method 180
technology life cycles 174
technology risk of development 162
technology transfer 163-164, 176
TEM, see transmission electron microscopy
therapeutic agents 10-11, 48
trade secrecy 148-150
transhumanism 115-116
quantum computers 75
quantum dot nanocrystals 61
radiolabeled readout 34, 36-37
radiolabels 36
regenerative medicine 60-61, 63, 65
present value after evaluation (PVAE) 187-192, 194-196, 198-201, 205
proteomics 22, 33, 36, 40
PVAE, see present value after evaluation
Index

- **transmission electron microscopy (TEM)** 45
- **tuberculosis** 82, 89, 94
- **tumor cells, circulating** 50
- **tumors** 11, 43–44, 48–49, 83, 89, 91–93
- **primary** 50
- **US patents** 139, 141
- **vasculoid** 71
- **VCs, see venture capitalists**
- **venture capitalists (VCs)** 172, 175
The nanotechnology industry is a fast-growing sector with a huge potential for novel applications and astonishing profits, but it is facing a difficult moment because of the current turmoil and the doubts raised by those calling for a moratorium in research activities as long as the potentially adverse effects of this discipline are not fully ascertained.

The book starts with a thorough introduction to nanotechnology and nanomedicine and their funding sources. Once the contours of the subject matter are identified, a scrutiny of the legislation currently applicable to nanotechnology and nanomedicine is carried out together with the examination of the intellectual property rights that can be envisaged to protect and valorize the said innovations. The use of patents and other viable routes are considered, together with the current valuation methods, which show how a quantitative valuation in this field is not conceivable. The study duly considers the monetization of innovations through ordinary and nonconventional solutions like ad hoc initiatives, auctions, and brokerage.

Luca Escoffier graduated in law from the University of Parma, Italy, and then earned a Master of Laws in intellectual property law in 2003 from the University of Turin/World Intellectual Property Organization. After spending several years in law firms, and in an Italian nanobiotech company, he moved to Seattle in 2008 to work as a visiting scholar, and then as a visiting lecturer, at the University of Washington. Escoffier is a Fellow of the Stanford-Vienna Transatlantic Technology Law Forum, invited researcher at Waseda University (Tokyo), and a Singularity University alumnus (2010). He is a cofounder of Innovaventually, one the most innovative Open Innovation online portals, and works as cofounder, mentor, and consultant for several companies and organizations around the world.

Mario Ganau is a neurosurgeon and a global clinical scholar in clinical trials (Harvard Medical School, USA). He holds a PhD in nanotechnology (University of Trieste, Italy), CAS in management of biotech, medtech, and pharma ventures (Ecole polytechnique fédérale de Lausanne, Switzerland), DIU in neuropharmacology (Université Pierre et Marie Curie, France), MSBM in biological sciences (Université Claude Bernard Lyon I, France), and DIU in robotic surgery (Université Henri Poincaré, France). Featured in 2012 as a “Working Class Hero” by Wired Magazine Italia, he received the 2013 TOYP award for medical research by JCI, Italy, and a nomination for the Wired Audi Innovation Award 2014. Dr. Ganau is a cofounder and partner of iStarter, a startup incubator based in Turin and London.

Julielynn Wong is the founder of the Center for Innovative Technologies and Public Health, whose mission is to educate leaders on applying technologies to address the greatest challenges in healthcare. She worked at San Francisco-based Skull Global Threats Fund to build “Flu Near You,” the world’s largest crowdsourced flu-tracking and vaccine locator platform. She trained in space medicine at NASA Johnson Space Center and created 3D4MD, a digital platform of 3D printable medical supplies to deliver healthcare in the most challenging places. Dr. Wong is a faculty lecturer at Singularity University and cofounded its Digital Health and Wellness Program. She specializes in medical communication, having reported for ABC World News, Forbes, and the Huffington Post. She has made numerous television appearances, including in an Emmy-nominated series on Discovery Channel.