Nanoparticulate Vaccine Delivery Systems

edited by
Martin J. D’Souza
Nanoparticulate Vaccine Delivery Systems
Nanoparticulate Vaccine Delivery Systems

edited by

Martin J. D’Souza
1. Introduction

Kimberly Braz Gomes, Grace Lovia Allotey-Babington, Sucheta D’Sa, Zhaowei Jin, Naveen Bejaguam, Marissa D’Souza, Sanjay Gaikwad, Nima Akhavein, Dinesh Aswani, Wenkai Tong, Nigel D’Souza, and Richard T. Addo

1.1 Polymeric Carriers Used to Prepare Nanoparticles

1.1.1 Natural Polymers

1.1.2 Semi-Synthetic Polymers

1.1.3 Synthetic Polymers

1.2 Methods of Preparing Micro/Nanoparticles

1.2.1 Emulsification–Solvent Diffusion

1.2.2 Emulsification–Solvent Evaporation

1.2.3 Nanoprecipitation of Polymer(s)

1.2.4 Spray Drying

1.2.5 Albumin Particulates

1.2.6 Aquacoat®ECD

1.2.7 Poly (lactide-co-glycolide) Microspheres

1.3 Conclusion

2. Emerging Trends in Delivery of Novel Vaccine Formulations

Rikhav P. Gala, Sucheta D’Sa, Thripthy Chandran, Ruhi V. Ubale, and Trinh Phuong Vo

2.1 Advantages of Microparticulate Formulation

2.1.1 Defense Mechanism of the Physiological System
2.1.1.1 Immune system 1
2.1.1.2 Non-specific defense mechanism 1
2.1.1.3 Specific defense mechanism 16
2.1.2 Immunoglobulins and Immune Response 17
2.1.3 Mucosal System 20
2.1.4 Mucosal Immune Response 21
2.2 Oral Route for Administration of Vaccines 21
2.3 Subcutaneous Delivery for Micro/Nanoparticulate Vaccines 24
 2.3.1 Introduction 24
 2.3.2 Anatomy 25
 2.3.3 Immunological Structures 26
 2.3.4 Absorption from Injection Site 27
2.4 Transdermal Delivery of Particulate Vaccines 31
 2.4.1 Introduction 31
 2.4.2 Nanoparticles as a Vaccination Strategy 33
 2.4.3 Non-Barrier-Compromising Transcutaneous Vaccination 33
 2.4.3.1 The follicular route 33
 2.4.4 Particulate Systems Used for Transdermal Vaccination Strategies 34
 2.4.5 Transcutaneous Vaccination Using Nanoparticles Aided by Barrier Compromising Methods 35
 2.4.5.1 Microneedles for transcutaneous vaccination 35
 2.4.6 Microparticles as Vaccine Carriers 36
2.5 Pulmonary Delivery of Biologics 37
2.6 Buccal Delivery of Vaccines 39
 2.6.1 Introduction 39
 2.6.2 Overview of Oral Mucosa: Structure 40
 2.6.3 Immunology of the Buccal Cavity 41
 2.6.4 Future Directions 42
2.7 Intranasal Delivery of Microparticulate Vaccine 43
 2.7.1 Introduction 43
2.7.2 Structure and Physiology of the Nasal Cavity 43
2.7.3 Factors Affecting the Nasal Absorption 45
 2.7.3.1 Nasal physiological factors 45
 2.7.3.2 Physicochemical characteristic of drugs 46
 2.7.3.3 Effect of formulation 46
2.7.4 Immune Response Following Intranasal Vaccination 46
2.7.5 Applications 48
2.7.7 Vaccines 49

3. Design of Experiments: A Valuable “Quality by Design” Tool in Formulation Development 61

Lakshmi Prasanna Kolluru, Rikhav P. Gala, Prathap Nagaraja Shastri, and Ruhi V. Ubale

3.1 Introduction 61
3.2 Types of Design of Experiments 62
 3.2.1 Factorial Designs 62
 3.2.2 Fractional Design 67
 3.2.3 Plackett Burman Design 67
 3.2.4 Mixture Design 67
 3.2.4.1 Mixture design I: Simplex lattice mixture design 70
 3.2.4.2 Mixture design II: Extreme vertices mixture design 76
 3.2.5 Central Composite Design 85
 3.2.6 Optimal Designs 86
 3.2.7 Box-Behnken Design 86
3.3 New Trends in Design of Experiments 87
3.4 Conclusion 87

4. Albumin Microspheres as Oral Delivery System for Mycobacterium Tuberculosis Vaccines 93

Kwame G. Yeboah and Trinh Phuong Vo

4.1 Introduction 93
4.2 Preparation of Microparticles 96
4.2.1 Particle Size Analysis 96
4.2.2 Measurement of Zeta Potential 96
4.2.3 Antigen Bioactivity and Antigen Encapsulation Efficiency Study 98
4.2.4 In vitro Release Profile of FITC-Labeled BSA from the Microspheres 100
 4.2.4.1 Evaluation of the mechanism of release from the formulation by Higuchi plot analysis 102
4.2.5 Dosing for in vivo studies 103
4.2.6 Serum Immunoglobulin G 104
4.2.7 Serum Immunoglobulin A 105
4.2.8 Mucosal IgA Production 106
4.2.9 Comparative Mucosal IgA 107
4.3 Conclusion 109

5. **Microparticulate Formulation for a Pneumococcal Capsular Polysaccharide Antigen** 115

Bernadette D’Souza, Prathap Nagaraja Shastri, Gabrielle Hammons, Lakshmi Prasanna Kolluru, Nihal S. Mulla, and Gowrisankar Rajam

5.1 Introduction 115
 5.1.1 Pnc Polysaccharide Antigen Formulation into Microparticles 117
 5.1.2 Microparticles Characterization for Various Physical Properties 117
 5.1.3 Integrity of Pnc Antigen in Microparticle Is Tested Using a Competitive LUMINEX Assay 118
 5.1.4 Microparticle Potentiation of Antigen Immune Response Is Tested in a Mouse Model 119
 5.1.4.1 Study 1: Pre-screening of MPs 120
 5.1.4.2 Study 2: in vivo assessment of Pnc PS formulations 121
5.2 Discussion 122
6. Development of Non-Conjugated Meningitis Particulate Vaccine 127
Rikhav P. Gala, Ruhi V. Ubale, Martin J. D’Souza, and Susu M. Zughaier

6.1 Introduction 127
6.2 Methods 129
 6.2.1 Preparation of Microparticles 129
 6.2.2 Characterization of Microparticles 132
 6.2.3 Cytokine Release from Macrophages Exposed to CPS-Loaded Microparticles 133
6.3 Conclusions 138

7. Immunogenicity of Microparticulate Influenza Vaccine 141
Prathap Nagaraja Shastri, Trinh Phuong Vo, Minchul Kim, Fu-Shi Quan, and Sang-Moo Kang

7.1 Introduction 142
 7.1.1 Preparation of Microparticles 144
 7.1.2 Physical Characterization of Microparticles 145
 7.1.3 Hemagglutination Assay to Determine Antigen Activity in Microparticles 146
 7.1.4 Release Study of Influenza Virus Antigen from Microparticles 146
7.2 In vivo Evaluation of Influenza Particulate Vaccine 148
 7.2.1 Immunization 148
 7.2.2 ELISA to Measure Antibodies 149
 7.2.3 IgG Antibody Responses after Oral Vaccination 149
 7.2.4 Oral Formulated Vaccines Induce Homologous Protection 152
7.3 Conclusions 154

8. Oral Microparticulate Vaccine for Melanoma 157
Bernadette D’Souza, Gary Bumgarner, Sucheta D’Sa, Tuhin Bhowmik, Periasamy Selvaraj, and Martin J. D’Souza

8.1 Introduction 157
8.2 Formulation of the Vaccine in Albumin Microparticles 161
8.3 Characterization of the Particulate Vaccine 162
 8.3.1 Scanning Electron Microscopy of Antigen Microparticles 162
 8.3.2 Particle size distribution 162
 8.3.3 Determination of Zeta Potential 163
8.4 In vitro Cytotoxicity Study 163
8.5 In vivo Evaluation of the Particulate Vaccine 164
8.6 Oral Vaccine Efficacy and Tumor-Challenge Study 164
8.7 In vivo Antibody Response Study 165
8.8 Tumor Challenge Study 166

9. Mucosal Delivery of Particulate Breast Cancer Vaccine 171
Lipika Chablani, Nihal S. Mulla, Periasamy Selvaraj, and Martin J. D’Souza

9.1 Introduction 171
9.2 Formulation and in vivo Evaluation of Particulate Breast Cancer Vaccines 173
 9.2.1 Oral Vaccines 173
9.3 Methods 174
 9.3.1 Preparation of Lectin-Containing Microparticles for M-Cell Targeting 174
 9.3.1.1 Whole-cell lysate preparation 174
 9.3.1.2 Vaccine microparticle preparation 175
 9.3.2 Physical Characterization of Microparticles 175
 9.3.2.1 Characterization of size, shape, and charge of microparticles 175
 9.3.2.2 In vitro antigen release from microparticles 175
 9.3.2.3 Particle cytotoxicity 176
 9.3.3 In vivo Evaluation 177
 9.3.4 Tumor Challenge 177
 9.3.5 Flow Cytometry Analysis to Elucidate Role of Immune Cells 178
Contents

9.4 Discussion 180
9.5 Conclusions 181

10. Immunotherapeutic Oral Formulation for Prostate Cancer 185

Archana Akalkotkar, Ashwin Parenky, and Martin J. D’Souza

10.1 Introduction 185
10.2 Particulate Whole-Cell Lysate Vaccines for Prostate Cancer 186
10.3 Summary and Conclusions 191

11. Needle-Free Delivery of Ovarian Cancer Particulate Vaccine 195

Rikhav P. Gala, Suprita A. Tawde, Maurizio Chiriva-Internati, and Martin J. D’Souza

11.1 Introduction 195
11.2 Methods 199
11.3 Results 200
11.4 Conclusion 207

12. Future Prospects for Global Immunization 211

Grace Lovia Allotey-Babington, Trinh Phuong Vo, and Kimberly Braz Gomes

Index 217
List of Contributors

Addo, Richard T.
Union University, Jackson, TN, USA

Akalkotkar, Archana
University of Louisville, Louisville, KY, USA

Akhavein, Nima
GlaxoSmithKline Pharmaceuticals, Philadelphia, PA, USA

Allotey-Babington, Grace Lovia
Mercer University, Atlanta, GA, USA

Aswani, Dinesh
Spherics, Inc, Mansfield, MA, USA

Bejugam, Naveen
SRI International, Menlo Park, CA, USA

Bhowmik, Tuhin
Takeda Vaccines, Inc., Bozeman, MT, USA

Braz Gomes, Kimberly
Mercer University, Atlanta, GA, USA

Bumgarner, Gary
McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA

Chablani, Lipika
Department of Pharmaceutical Sciences, Wegmans School of Pharmacy, St. John Fisher College, Rochester, NY, USA
Chandran, Thripthy
Mercer University, Atlanta, GA, USA

Chiriva-Internati, Maurizio
Texas Tech University Health Science Center,
Lubbock, TX, USA

D’Sa, Sucheta
Mercer University, Atlanta, GA, USA

D’Souza, Bernadette
McWhorter School of Pharmacy,
Samford University, Birmingham, AL, USA

D’Souza, Marissa
Georgia Institute of Technology, Atlanta, GA, USA

D’Souza, Martin J.
Mercer University, Atlanta, GA, USA

D’Souza, Nigel
Northview High School, Atlanta, GA, USA

Gaikwad, Sanjay
University of St. Joseph, Hartford, CT, USA

Gala, Rikhav P.
Mercer University, Atlanta, GA, USA

Hammons, Gabrielle
Division of Bacterial Diseases,
National Center of Immunization and Respiratory Diseases,
Centers for Disease Control and Prevention, Atlanta, GA, USA

Jin, Zhaowei
Pfizer, New York, NY, USA

Kang, Sang-Moo
Georgia State University, Atlanta, GA, USA
Kim, Minchul
Georgia State University, Atlanta, GA, USA

Kolluru, Lakshmi Prasanna
Pharmaforce, New Albany, OH, USA

Mulla, Nihal S.
Mercer University, Atlanta, GA, USA

Parenky, Ashwin
Mercer University, Atlanta, GA, USA

Quan, Fu-Shi
Emory University, Atlanta, GA, USA

Rajam, Gowrisankar
Division of Bacterial Diseases, National Center of Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA

Selvaraj, Periasamy
Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA

Shastri, Prathap Nagaraja
WIL Research Laboratories, Ashland, OH, USA

Tawde, Suprita A.
Akorn Pharmaceuticals Inc., Vernon Hills, IL, USA

Tong, Wenkai
Symphony Health Solutions, San Diego, CA, USA

Ubale, Ruhi V.
LECOM School of Pharmacy, Bradenton, FL, USA

Vo, Trinh Phuong
Mercer University, Atlanta, GA, USA
List of Contributors

Yeboah, Kwame G.
Harding University, Searcy, AR, USA

Zughaier, Susu M.
Department of Microbiology & Immunology,
Emory University School of Medicine, Atlanta, GA, USA
In recent years, there has been an unprecedented explosion of research and applications in the field of nanotechnology. Nanotechnology has the potential to significantly improve the prevention, detection, and treatment of diseases. There is a tremendous amount of excitement, that this field of nanotechnology will build momentum and produce new avenues for the treatment of diseases. Inherent to this optimism, are the related challenges in the areas of medical applications. For example, it is difficult to adequately assess the biological effects of nanoparticles due to the fact that because of their small size, their properties may be rather unpredictable in the body. Further, changes in the overall nature and properties, route of administration, and dose administered can significantly affect the response and toxicity. Despite the fact that better-engineered and much more sophisticated nanomaterials will continue to be evaluated and utilized to a greater extent in the future for a wide range of biomedical applications, there is also a growing concern that unexpected toxicity may arise from desired properties, such as higher hypersensitivity, and accessibility to cells, which newer materials possess in the nano range.

This book addresses novel nano and micro-vaccines that can be administered orally or via the transdermal route. The proposed oral vaccines can be administered in the form of suspensions or capsules. Also, research focused on improving stability, biocompatibility and limiting toxicity with novel nanoparticles are discussed. This book discusses at length, vaccines for two major classes of diseases: (1) infectious diseases and (2) cancer vaccines.

Advances in nanotechnology have paved the way to the discovery of innumerable methods for prevention or treatment of various diseases. Its impact on immunotherapy potentiates vaccine delivery and efficacy. Immunotherapy is a specialized method of eliminating diseases, where it primes the immune system to combat foreign antigens (in case of infectious diseases) or self-antigens (in case of cancer). It has withstood the test of time and
has been a cost-effective mechanism to prevent or treat diseases. With the evolution of different challenging diseases, and the identification of cancer antigens, there is an urgent need for vaccine development to save lives of millions throughout the world. Moreover, in case of existing vaccines, there is still a need to address issues with respect to safety, effectiveness, ease of administration, time of preparation, and, most importantly, the cost. Recent developments in immunology and molecular biology explore new vaccine materials and aim at triggering memory response to vaccines. The threat of cancer and its metastatic incidences has been a concern for over a century, and attempts to combat this “smart disease” have not yet paved the way for successful cancer therapy. Surgery and chemotherapy have not succeeded in eliminating tumor cells, which results in relapse of tumors within a few years of post-treatment in various cancers. Several clinical studies in cancer vaccines are under way and most of them have not progressed beyond phase III studies. It has been observed that even though antigen-specific response is obtained with different approaches of antigen specific immunization, there is no consistency in clinical benefit. Recently, a therapeutic prostate cancer vaccine (Provenge®) was introduced into the market in April 2010 by Dendreon Corporation (Seattle, WA), which involves isolating white blood cells from prostate cancer patients and stimulating them ex vivo. The cells are activated with a prostate-specific fusion protein and are then re-introduced into the patient. This procedure when carried out three times was found to result in marginal increase in median survival rate of prostate cancer patients by 4 months in clinical trials. These approaches are encouraging. However, the cost for the vaccine is over $90,000. Therefore, there is an urgent need to find new and, more importantly, affordable approaches. Unlike infectious disease vaccines, cancer vaccines need to be custom-designed for individual patients because of the diverse gene mutations in cancer cells. Therefore, cancer vaccine development requires a design that is rapid and potent and can be used to develop custom-designed vaccines for individual patients. Among various approaches being evaluated to combat cancer, microparticulate vaccine using whole cell lysate provides a unique and the simplest strategy, as microparticles represent a promising approach to deliver antigens to immune cells. Although specific antigen cancer vaccines or dendritic cells pulsed with antigens are now used due
to the advancement in recombinant technology and gene expression, the whole cell lysate vaccine still remains a very promising approach, as it can overcome the demerits associated with a single antigen/epitope vaccine. Whole cell lysate provides a pool of tumor-associated antigens (TAAs), which can induce both CD8+ and CD4+ T cells.

This book addresses many of the problems associated with the current vaccine therapies such as time involved in vaccine preparation, specific antigen isolation/purification, and the high vaccine costs. Therefore, cancer immunotherapy is being evaluated in conjunction with chemotherapy. The microparticulate system has several advantages over the use of the antigens by themselves without incorporation into a delivery vehicle. It has been demonstrated that particulate antigens are more immunogenic when compared to soluble antigens. Improved uptake of the particles compared to the solution results in higher cytotoxic T-lymphocyte response against the cancer cells. Another potential advantage of the microparticulate delivery system is that various immunopotentiators can be included in the delivery systems to enhance the immune response. The microparticulate delivery systems are of similar dimension as compared to a pathogen. The antigen-presenting cells in the body easily phagocytose these microparticles and generate a robust immune response. Although various cancer antigens are being identified and evaluated for cancer immunotherapy, there is still a concern with the lack of progress in formulation and routes of administration currently used. In this book, we present nano- and microparticulate carrier systems, which can deliver the antigens effectively to generate an immune response via non-invasive routes such as oral and transdermal administration.

Transdermal microneedle-based particulate vaccine delivery is an attractive mode of immunization because of its ease of administration and requires no specially trained personnel and thus may eliminate many problems associated with needle injections. Briefly, the microneedle device creates microchannels to allow passage of the vaccine particles into the dermis and thus initiating vaccine response due to particle uptake by immune cells. Transdermal delivery is considered a promising route for vaccine administration because of the skin-associated lymphoid tissue, which comprises the Langerhans cells, dermal dendritic cells,
lymph nodes, and subsets of T-lymphocytes. The microparticles are taken up by these immune cells in the skin, which trigger mucosal as well as systemic immune response. Langerhans cells are dendritic cells that activate T cells and induce a strong immune response and occupy around 20% of the skin’s area. They can induce immunity by either endogenous antigen or exogenous antigen uptake. The endogenous antigen is processed and presented by MHC Class I to CD8+ T cells and MHC Class II presents the exogenous antigen to CD4+ T cells. Also, the vaccine microparticles can generate better immune response when compared to the solution form. The microparticles are prepared using a single-step process with the use of a spray dryer. Avoidance of organic solvents and minimal exposure of antigens to high temperatures during spray drying techniques ensured retention of their bioactivity. This book discusses oral vaccines for infectious diseases such as tuberculosis, typhoid, influenza, pneumonia, meningitis, and hepatitis B, as well as vaccines for cancers such as melanoma and prostate, breast, and ovarian cancer. The vaccine particles for oral administration can be formulated using enteric biodegradable material. The oral microparticles are targeted to M cells of Peyer’s patches of small intestine using M cell targeting ligands, which generates immune response via immune cells in gut. Thus, the oral as well as transdermal microparticulate vaccines described in this book provide a promising approach in terms of cost-effectiveness, ease of production, and patient compliance.

In summary, this book presents the most recent advances in the field of vaccines and will serve as a useful tool for both researchers and students to further their knowledge in the field of vaccines for both cancer and infectious diseases.