Polysaccharide Hydrogels

Characterization and Biomedical Applications

edited by
Pietro Matricardi | Franco Alhaique | Tommasina Coviello

“This book unveils the secrets of polysaccharide hydrogels that make them invaluable tools in the biomedic field. It presents elegant approaches to preparing hydrogels, techniques for a very detailed characterization of polysaccharides and their hydrogels, and recent applications.”

Prof. Carmen Alvarez-Lorenzo
University of Santiago de Compostela, Spain

“This book is one of the first to cover all the aspects of polysaccharide hydrogels from the basic aspects of chemistry and characterization to their biological relevance and medical applications and is a great and comprehensive answer to the first questions concerning hydrogels.”

Prof. Pierre Weiss
University of Nantes, France

“The gel is easier to recognize than to define” (Dorothy Jordan Lloyd, 1926). This book gives significant answers to this “old but still intriguing statement as it brings together most of the up-to-date information on the hot topic of hydrogels obtained from polysaccharides, and their preparation, characterization and application in the field of pharmaceutics.”

Prof. Gaetano Giammona
University of Palermo and The Biophysics Institute, Italy

Hydrogels are an emerging area of interest in medicine as well as pharmaceutics, and their physico-chemical characterization is fundamental to their practical applications. Compared with synthetic polymers, polysaccharides that are widely present in living organisms and come from renewable sources are extremely advantageous for hydrogel formation. Furthermore, polysaccharides are usually non-toxic and biocompatible and show a number of peculiar physico-chemical properties that make them suitable for a wide variety of biomedical applications. This book bridges the gap between the preparation of hydrogels and their characterization techniques. It aims to offer a valid support that can help the readers find appropriate keys to open the doors to the complex world of polysaccharide hydrogels.

Pietro Matricardi is assistant professor at the Department of Drug Chemistry and Technologies, University of Rome “La Sapienza”, Italy. His scientific activity is focused on the development of new polysaccharide hydrogels for drug delivery applications and on the physico-chemical characterization of hydrogels.

Franco Alhaique is professor emeritus at the University of Rome “La Sapienza”, where he teaches pharmaceutical technology. His major research interests include polysaccharide hydrogels and vesicles for drug delivery. He serves on the editorial board of scientific journals and is co-editor of the Journal of Drug Delivery Science and Technology.

Tommasina Coviello obtained her PhD in chemistry from University of Rome “La Sapienza”, where she is associate professor of pharmaceutical technology. Her research topics, which deal with the physical-chemical characterization of polysaccharides and of polymeric drug delivery systems, have been published in more than 80 papers in international journals.
Polysaccharide Hydrogels
Polysaccharide Hydrogels
Characterization and Biomedical Applications

edited by
Pietro Matricardi
Franco Alhaique
Tommasina Coviello
“The pursuit of science has often been compared to the scaling of mountains, high and not so high. But who amongst us can hope, even in imagination, to scale the Everest and reach its summit when the sky is blue and the air is still, and in the stillness of the air survey the entire Himalayan range in the dazzling white of the snow stretching to infinity? None of us can hope for a comparable vision of nature and of the universe around us. But there is nothing mean or lowly in standing in the valley below and awaiting the sun to rise over Kinchinjunga.”

Subrahmanyan Chandrasekhar (Nobel Prize in Physics, 1983)
Contents

Preface xv

1 Introduction
Franco Alhaique, Tommasina Coviello, and Pietro Matricardi
1.1 Tissue Engineering and Regenerative Medicine 3
1.1.1 Bone, Cartilage, and Skin 3
1.1.2 Cardiac Tissues 9
1.1.3 Ovaries and Oviducts 9
1.1.4 Langerhans Cell Encapsulation and Insulin Delivery 10
1.2 Ocular Delivery 11
1.3 Nasal Delivery 14
1.4 Buccal Administration 15
1.5 Vaginal Delivery 16
1.6 Colon Delivery 18
1.7 Tumor Therapies 20
1.8 Conclusions 22

2 Hydrogels 39
Massimiliano Borgogna, Eleonora Marsich, Ivan Donati, Sergio Paoletti, and Andrea Travan
2.1 Definition 39
2.2 Mechanical Properties of Hydrogels 42
2.2.1 Structure and Compression Resistance 42
2.2.2 Hydrogels with Improved Mechanical Behavior 47
2.3 Interaction with Solvent: Swelling Properties 49
2.4 Classification of the Gels 54
2.4.1 Chemical Gels 55
4.4 Low-Field NMR
 4.4.1 Relation between the Relaxation Time and the Mesh Diameter 150
4.5 Release Tests 156
4.6 Case Study 158
 4.6.1 Alginites 158
 4.6.2 Alginate–Methacrylated Dextran 159
 4.6.3 Scleroglucan 160
4.7 Conclusions 161

5 Dynamic Light Scattering 167
 Walther Burchard
5.1 Introduction 167
5.2 Short Outline of the History in the Development of Optics 169
5.3 Brownian Motion and Relation to Stochastic Processes 172
5.4 Time Correlation Functions 173
5.5 Comment on Averages and the Effect of External Forces 174
5.6 Flexible Particles: Linear and Branched Macromolecules in Solution 176
5.7 The Time Correlation Function in Dynamic Light Scattering 178
5.8 Intermediate Summary 182
5.9 Relation Between Static LS and Dynamic DLS 184
5.10 Summary 186
 5.10.1 Polydispersity 187
 5.10.2 Internal Modes of Motion 190
 5.10.3 Proteins 193
5.11 Polydispersity and Effects of Cluster Formation 194
5.12 Electrophoretic/Dynamic Light Scattering 196
5.13 Summary of ELS/DLS 200
5.14 Concentration Dependence 200
5.15 Summary 202

6 NMR Methodologies in the Study of Polysaccharides 209
 Chiara Di Meo, Noemi Proietti, Luisa Mannina, and Donatella Capitani
6.1 NMR in Solution 209
Contents

6.2 Solid State NMR 213
 6.2.1 Cross-Polarization (CP) Dynamic 216
6.3 1H HR-MAS NMR 221
 6.3.1 1H HR-MAS Diffusion 225
 6.3.2 1H Pulsed Low-Resolution NMR 228
6.4 1H Pulsed Low-Resolution NMR in Polysaccharide-Based Hydrogels 231
6.5 Conclusion 238

7 Small-Angle Neutron Scattering of Polysaccharide Hydrogels 245
Mitsuhiro Shibayama
 7.1 Introduction 246
 7.2 Basic Features of Neutron Scattering 246
 7.2.1 Scattering Contrast 246
 7.2.2 Transmission 248
 7.2.3 Incoherent Scattering 248
 7.3 Theoretical Background 250
 7.3.1 Scattering Function of Semi-dilute Polymer Solutions 250
 7.3.2 Scattering Functions of Polymer Gels and Inhomogeneities 251
 7.3.3 Inhomogeneities 252
 7.4 Progress in Structural Investigations of Polymer Gels by Neutron Scattering 253
 7.4.1 Synthetic Hydrogels 253
 7.4.2 Polysaccharides 254
 7.5 Concluding Remarks 261

8 The Method of Small-Angle X-ray Scattering and Its Application to the Structural Analysis of Oligo- and Polysaccharides in Solution 265
Kanji Kajiwara and Isao Wataoka
 8.1 Introduction 266
 8.2 Method of Small-Angle X-ray Scattering 266
 8.2.1 General Description of Scattering 266
 8.2.2 Structure Parameters 274
 8.2.3 Scattering from Non-particulate Systems 278
 8.2.4 Scattering by Density Fluctuation 285
Contents

8.2.4.1 Typical distributions 285
8.2.4.2 Pair correlation function 288
8.2.5 Interference Effect 294
8.2.6 Scattering at Zero Angle 298
8.3 Application to the Conformational Analysis of Polysaccharides 301
8.3.1 General Strategy 303
8.3.2 Conformation of Single Poly-(1 → 4)-α-D-glucan and Poly-(1 → 4)-β-D-glucan 305
8.3.3 Conformation of Poly-(1 → 4)-β-D-glucan with Side Chains 311
8.3.4 Conformation of Oligo-(1 → 4)-α-D-glucan as Side Chains 317
8.4 Concluding Remarks 320

9 Stimuli-Responsive Polysaccharide-Based Hydrogels 325
André R. Fajardo, Antonio G. B. Pereira, Adley F. Rubira, Artur J. M. Valente, and Edvani C. Muniz
9.1 Basic Concepts of Hydrogels 325
9.2 Main Characteristic of Stimuli-Responsive Hydrogels 329
9.2.1 Temperature-Responsive Hydrogels 329
9.2.2 pH-Responsive Hydrogels 332
9.2.3 Ionic Strength (IS)-Responsive Hydrogels 335
9.2.4 Solvent-Responsive Hydrogels 336
9.2.5 Other Responsive Hydrogels 338
9.3 Characteristic of Stimuli-Responsive Polysaccharide-Based Hydrogels 338
9.4 Strategies Used for Synthesis of Stimuli-Responsive Polysaccharide-Based Hydrogels 340
9.4.1 Polysaccharide-Based Chemical Hydrogels 340
9.4.2 Polysaccharide-Based Physical Hydrogels (Polyelectrolyte Complexes) 342
9.4.3 Characterization of Stimuli-Responsive Polysaccharide-Based Hydrogels 343
9.5 Some Applications of Stimuli-Responsive Polysaccharide-Based Hydrogels 344
9.5.1 Drug Delivery Carriers 345
9.5.2 Scaffolds for Cell Growth 346
10 Properties and Biomedical Applications of Gellan Gum Hydrogels

Cencetti Claudia, Pietro Matricardi, Franco Alhaique, and Davide Bellini

10.1 Origin and Biosynthesis 368

10.1.1 Sphingans 368

10.1.2 Gellan Biosynthesis 368

10.2 Structure and Physical Properties 369

10.2.1 Structure of Gellan in Solid State 370

10.2.2 Conformational Transition of Gellan in Solution 370

10.2.3 Gelation of Gellan 373

10.2.3.1 Monovalent cation-induced gelation of gellan 375

10.2.3.2 Divalent cation-induced gelation of gellan 378

10.2.3.3 Gelation of gellan without added salts 381

10.2.3.4 Effect of acyl substituents 382

10.3 Applications 384

10.3.1 Gellan for Drug Delivery System 385

10.3.2 Gellan in Tissue Engineering 387

11 Polysaccharide Hydrogels with Magnetic Nanoparticles

Serena Fedi and Rolando Barbucci

11.1 Introduction 396

11.2 Methods of Preparation of Magnetic Hydrogels 399

11.3 Methods of Characterization 401

11.3.1 Physicochemical Studies 401

11.3.2 Rheological Properties 404

11.3.3 Morphological Studies 406

11.4 Magnetic Hydrogel Responses to Magnetic Stimuli 407

11.5 Drug Release Applications of Magnetic Hydrogels 410
12 Physical and Chemical Hyaluronic Acid Hydrogels and Their Biomedical Applications 417
Assunta Borzacchiello, Luisa Russo, Sabrina Zaccaria, and Luigi Ambrosio
12.1 Hyaluronic Acid 418
 12.1.1 General Features and Biodistribution 418
 12.1.2 Physical and Chemical Properties of HA 420
12.2 Physical and Chemical HA-Hydrogels 424
 12.2.1 Chemical Modifications of HA: Synthesis of New HA Derivatives 424
 12.2.2 From HA Derivatives to HA Physical and Chemical Hydrogels 430
12.3 Biomedical Applications 433
 12.3.1 Biomedical Applications of Chemical HA Hydrogels 433
 12.3.2 Biomedical Application of Physical HA Hydrogels 436

13 Alginate Hydrogels: Properties and Applications 449
Gudmund Skjåk-Bræk, Ivan Donati, and Sergio Paoletti
13.1 Sources 449
13.2 Chemical Structure 451
13.3 Biosynthesis and Sequence Engineering 454
13.4 Sequence Determination 458
13.5 Gel Formation and Ion Binding Properties 462
 13.5.1 Ionic Gels 462
 13.5.2 Ion Binding Properties and Sequence Relationship 464
 13.5.2.1 Sequence specificity: concepts 464
 13.5.2.2 Sequence specificity: macroscopic consequences 467
13.6 Applications 478
13.7 Conclusions and Future Perspectives 483

14 Polysaccharide Hydrogels: The Present and the Future 499
Yeon Hee Yun, Byung Kook Lee, John Garner, and Kinam Park
14.1 Polysaccharides 499
14.2 The Big Picture 500
14.3 Uniqueness of Polysaccharides 501
14.4 Smart Hydrogels 503
14.5 Future 505

Index 511
Preface

“What is a hydrogel?” “Sorry for taking your time Prof., but I need an explanation from you: what is the difference between a very viscous concentrated polymer solution and a hydrogel?” “Excuse me, I don’t want to bother you, but I have also another question: how can I characterize a hydrogel?”

How many times polymer scientists, involved in the field of hydrogels, received these important and sometimes challenging questions? And how many times are we embarrassed while answering due to the difficulties in explaining the main features of this particular “state of matter” in a simple and straightforward manner?

“...the gel ...is easier to recognize than to define...”. This is the famous statement that Dorothy Jordan Lloyd wrote in her book in 1926. Although since then much work has been carried out on hydrogels for their better characterization and definition, for many people and even for “experts” in this subject, this part of science still remains in the “dark side of the moon”.

After a long scientific and professional activity, mainly devoted to polysaccharide hydrogel innovation, characterization, and evaluation of possible uses in the field of pharmaceutics and biomedical devices, we decided to summarize the state of the art in this discipline, trying, at the same time, to answer to the main questions that those who want to start a scientific approach to hydrogels and their applications in pharmacy and medicine must face.

The aim behind the preparation of this book is to offer students, scientists, and professionals a valid support that can help them find their way within the complex world of polysaccharide hydrogel characterization. In this book, we have selected topics, mainly related to the experimental aspects, that we encountered more
frequently during our various studies. At the same time, we were
forced to leave out several aspects that could also be considered
as important topics, but, as it happens in most of the events of
our life, selections and exclusions are needed because of mandatory
limitations such as the size of this book.

While preparing this book, we asked for the assistance of many of
our friends whom we met over the years during our studies, sharing
with them competencies and receiving knowledge and friendship.
We thank all of them for their willingness.

We would also like to thank Dr. Claudia Cencetti for her
invaluable work in text revision.

Finally, we would like to thank all the colleagues that helped us
in directing our steps within this discipline, since the beginning and
over the years. In this sense we would like to remember in particular
Prof. Vittorio Crescenzi, a mentor and a group leader in this field.
It was under his guidance that, enlightened by his knowledge, we
discovered the fascinating world of polysaccharide hydrogels.

Pietro Matricardi
Franco Alhaique
Tommasina Coviello
Autumn 2015