“This book provides an innovative and thought-provoking view of electrochemical processes in nanofabrication. A comprehensive overview of the field is complemented by focused coverage of niche specialist topics involving metallic, oxide and polymeric materials in diverse combinations and complex interfacial architectures. A pedagogical approach to the central fundamental concepts allows the non-specialist to appreciate the significance of some perceptive subsequent analytical critique. Excellent use of illustrative material assists appreciation of the synergy between the novel fundamental science and its application in practical devices. This is an excellent book for those working in the field and others considering entering it.”

Prof. A. Robert Hillman
University of Leicester, UK

Nanotechnology has attracted billions of dollars in venture capital from research institutes, governments, and industries in recent years. Traditional nanofabrication techniques such as CVD, sol–gel, and self-assembly have been intensively studied. However, the electrochemical nanofabrication technique, which offers huge benefits for manufacturing nanomaterials as well as broad applications in industries, has not been given much attention compared with the traditional nanofabrication methods. This book fits the niche of such technology because it summarizes various electrochemical nanofabrication methods and shows their various essential applications in areas such as batteries, sensors, and many future technologies.

With the development of nanotechnology and nanomaterials, the arena of electrochemical nanofabrication has expanded significantly. The first edition of this book was drafted in 2009. In 2010, the Nobel Prize in Physics was awarded to Prof. Konstantin Novoselov and Prof. Andre Geim from the University of Manchester for their groundbreaking experiments on the two-dimensional material graphene. Three years later, the European Commission launched the European Union’s biggest ever research initiative, the Graphene Flagship, with a budget of 1 billion euros. In light of these developments, the new edition of the book is enriched with the synthesis of graphene-based materials through electrochemical methods, the applications of graphene in lithium-ion and sodium-ion batteries, and the use of graphene composites in various sensing platforms. It will be of immense interest to a broad audience in nanotechnology and electrochemistry.

Di Wei is a senior member of Wolfson College at the University of Cambridge and senior researcher at Nokia Technologies. He was also nominated docent (adjunct professor) at Abo Akademi University, Finland, in 2014. He has been Nokia’s principal investigator in energy work package within the European Union’s Graphene Flagship since 2013. His research covers organic electronics, sensors, and energy solutions (photovoltaics, supercapacitors, and batteries). In addition to contributing to over 50 peer-reviewed journal publications, 30 conference proceedings, 3 keynotes, and 50 international patents, Dr. Wei has written chapters for 4 books on the topics of nanotechnology and electrochemistry.
Electrochemical Nanofabrication

Second Edition
Electrochemical Nanofabrication
Principles and Applications
Second Edition
edited by
Di Wei

PAN STANFORD PUBLISHING
Contents

Preface xiii

1. Electrochemical Nanofabrications: A General Review 1
 Di Wei
 1.1 Electrochemical Atomic Layer Epitaxy 2
 1.2 Electrochemical Synthesis of Quantum Dots and Semiconducting Nanocompounds 4
 1.3 Electrochemical Deposition Methods for Metallic Nanostructures 7
 1.4 Electrochemical Nanolithography 9
 1.5 3D Electrochemical Nanoconstruction 15
 1.6 Electrochemical Etching and LIGA Technique 15
 1.7 Micro- and Nano-Machining by Ultrashort Voltage Pulsing Technique 17
 1.8 Template-Free Methods for Conducting Polymer Nano-Architecture 21
 1.9 Template Methods 24
 1.9.1 Anodized Aluminum Oxide Membranes 24
 1.9.2 Zinc Oxide 27
 1.9.3 Titanium Dioxide 30
 1.9.4 Electrochemical Fabrication of Soft Matters in Nanoscale Using Templates 32
 1.10 Carbon Nanotube Templates 35
 1.11 Colloidal Polystyrene Latex Templates 36
 1.12 Electrochemistry and Self-Assembled Monolayers 39
 1.13 Other Template Methods 41
 1.14 Nanoscale Electrochemistry 43
 1.15 Sonoelectrochemistry and Others 44
 1.16 Conclusions 45
2. Electrochemical Replication of Self-Assembled Block Copolymer Nanostructures

Edward Crossland, Henry Snaith, and Ullrich Steiner

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>60</td>
</tr>
<tr>
<td>2.2 Principles of Block Copolymer Self-Assembly</td>
<td>62</td>
</tr>
<tr>
<td>2.3 Block Copolymer Thin Films</td>
<td>67</td>
</tr>
<tr>
<td>2.3.1 Alignment of the Microphase</td>
<td>70</td>
</tr>
<tr>
<td>2.3.1.1 Electric field alignment</td>
<td>71</td>
</tr>
<tr>
<td>2.4 Porous Block Copolymer Film Templates</td>
<td>75</td>
</tr>
<tr>
<td>2.4.1 Nondegradative Routes to Porous Templates</td>
<td>77</td>
</tr>
<tr>
<td>2.4.2 Accessible Pore Sizes</td>
<td>78</td>
</tr>
<tr>
<td>2.4.3 Template Stability</td>
<td>79</td>
</tr>
<tr>
<td>2.4.4 Nanowire Replication: Cylinder-Forming BCP Templates</td>
<td>80</td>
</tr>
<tr>
<td>2.4.4.1 In-plane nanowires</td>
<td>80</td>
</tr>
<tr>
<td>2.4.4.2 Standing nanowires arrays</td>
<td>81</td>
</tr>
<tr>
<td>2.4.4.3 Polymeric nanowire replication</td>
<td>84</td>
</tr>
<tr>
<td>2.4.5 Combination with Top-Down Lithography</td>
<td>85</td>
</tr>
<tr>
<td>2.4.6 Bicontinuous Gyroid Copolymer Templates</td>
<td>86</td>
</tr>
<tr>
<td>2.4.6.1 Viewing the porous gyroid morphology</td>
<td>88</td>
</tr>
<tr>
<td>2.4.6.2 Replication of gyroid network arrays</td>
<td>89</td>
</tr>
<tr>
<td>2.5 Applications: The Bulk Heterojunction Solar Cell</td>
<td>96</td>
</tr>
<tr>
<td>2.5.1 Block Copolymers in the Dye-Sensitized Solar Cell</td>
<td>97</td>
</tr>
<tr>
<td>2.6 Concluding Remarks</td>
<td>103</td>
</tr>
</tbody>
</table>

Michal Wagner, Carita Kvarnström, and Ari Ivaska

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>3.2 Structure and Properties of Ionic Liquids</td>
<td>114</td>
</tr>
<tr>
<td>3.3 Electropolymerization of Conducting Polymers in Ionic Liquids</td>
<td>117</td>
</tr>
</tbody>
</table>
3.4 Synthesis of Polymer Composites and Carbon-Based Nanomaterials in Ionic Liquids 123
3.5 Conclusions 128

4. Imidazolium-Based Ionic Liquid Functional Materials and Their Application to Electroanalytical Chemistry 139
Yuanjian Zhang, Yanfei Shen, and Li Niu
4.1 Introduction 139
4.2 Electrosynthesis 140
4.3 Functionalization of Ionic Liquids for Ease Immobilization 142
4.4 Electrolyte-Free Electrochemistry 150
4.5 ILs-Based Multifunctional Compounds for Electrocatalysis and Biosensors 152
4.6 ILs-Protected Nanostructures as Electrocatalysts for Some Key Reactions 156
4.7 Others 160
4.8 Conclusions 163

5. Nanostructured TiO₂ Materials for New-Generation Li-Ion Batteries 171
Gregorio F. Ortiz, Pedro Lavela, José L. Tirado, Ilie Hanzu, Thierry Djenizian, and Philippe Knauth
5.1 Introduction 171
5.2 Economic and Scientific Context of Battery Technology over the World 173
5.2.1 Li-Ion Battery Technology: Past and Present 177
5.3 Fabrication of Self-Assembled TiO₂ Nanotubes 182
5.3.1 Anodization of Titanium: Experimental Aspects 182
5.3.2 The Principle of Fabrication 185
5.4 Characterization of Titania Nanotubes Layers 188
5.4.1 Scanning Electron Micrograph and X-Ray Diffraction 188
5.4.2 TiO₂ Polymorph: The Interest of Anatase and Amorphous Titania 192
5.5 Battery Applications
 5.5.1 Electrochemical Behavior of Samples in Lithium Cells
 5.5.2 SEM Study of Cycled Electrodes

5.6 Conclusions

6. Hierarchically Nanostructured Electrode Materials for Lithium-Ion Batteries
 Yu-Guo Guo, Sen Xin, and Li-Jun Wan

 6.1 Brief Introduction to Lithium-Ion Batteries
 6.2 Anode Materials
 6.2.1 Graphite
 6.2.2 Nongraphitized Carbon Materials
 6.2.3 Alloys
 6.2.4 Transition Metal Oxides
 6.3 Cathode Materials
 6.3.1 Layered Structured Hexagonal Oxide
 6.3.2 Spinel Structured Oxide
 6.3.3 Olivine Structured Oxide
 6.4 Nanostructured Electrode Materials
 6.4.1 Advantages of Nanomaterials
 6.4.2 Disadvantages of Nanomaterials
 6.5 Hierarchically Nanostructured Electrode Materials
 6.5.1 Sphere-Like Nano/Micro Hierarchical Structures for Electrode Materials
 6.5.2 Flower-Like Nano/Micro Hierarchical Structures for Electrode Materials
 6.5.3 Hierarchical 3D Mixed Conducting Networks
 6.6 Conclusions

7. Ionic Liquid-Assisted Fabrication of Graphene-Based Electroactive Composite Materials
 Pia Damlin, Bhushan Gadgil, and Carita Kvarnström

 7.1 Introduction
 7.2 Conducting Polymers
7.3 Ionic Liquids
 7.3.1 Ionic Liquids in Electrochemistry
7.4 Graphene
 7.4.1 Preparation of Graphene
 7.4.2 Production of Graphene Oxide
 7.4.2.1 Post treatment of GO
 7.4.3 Electrochemical Exfoliation of Graphite
7.5 Graphene/CP Composites
7.6 Applications of Composite Materials
 7.6.1 Supercapacitors
 7.6.2 Electrochromic Composite Materials

8. Chemically Converted Graphene: Functionalization, Nanocomposites, and Applications
 Li Niu, Yuanyuan Jiang, Yizhong Lu, Shiyu Gan, Fenghua Li, and Dongxue Han

8.1 Introduction
8.2 Graphene-Based Nanocomposite
 8.2.1 Graphene–Polymer Composites
 8.2.2 Graphene-Filled Polymer Composites
 8.2.3 Polymer-Functionalized Graphene
 8.2.4 Graphene–Nanoparticle Composites
 8.2.5 Composites with Metal Nanoparticles
 8.2.6 Composites with Metal Oxide Nanoparticles
 8.2.7 Graphene Quantum Dots Hybrids
 8.2.8 Composite with Other Nanoparticles
 8.2.9 Graphene Composite with Organic Molecules
8.3 Conclusions and Future Outlook

9. Development of Graphene-Based Nanostructures
 Huaqiang Cao

9.1 Introduction
9.2 Fluorescence Quenching of Hybrid Graphene Material Covalently Functional with Indolizine
9.3 Graphene-Based Materials Used as Electrodes in Ni-MH and Li-Ion Batteries 335
9.4 Removal of Dye from Water by Cu$_2$O@Graphene 349
9.5 Summary 354

10. Recent Advances in Multidimensional Electrode Nanoarchitecturing for Lithium-Ion and Sodium-Ion Batteries 365
Gregorio Ortiz, Pedro Lavela, Ricardo Alcántara, and José L. Tirado

10.1 Introduction 365
10.2 Newly Developed Procedures for nt-TiO$_2$ Utilization 366
10.3 First-Row Transition Metal Oxide Nanocomposites with Unusual Performance 369
10.3.1 Conversion Electrodes 369
10.3.2 Composites with Carbon Materials 371
10.3.3 Composites with Other Metal Oxides 373
10.3.4 Composites with Metals 375
10.3.5 Composites with Polymers 375
10.4 Metal Foams for 2D and 3D Battery Architectures 376
10.5 Graphene–Transition Metal Oxide Heterostructures for Battery Applications 380
10.5.1 Synthetic Route 382
10.5.2 Metal Oxides Involved in Energy Storage System 387
10.6 Surface Modification of Nanostructures for Improved Battery Performance 392

11. Electrochemical Fabrication of Carbon Nanomaterial and Conducting Polymer Composites for Chemical Sensing 417
Zhanna A. Boeva, Rose-Marie Latonen, Tom Lindfors, and Zekra Mousavi

11.1 Introduction 417
11.2 Composites of Carbon Nanotubes and Conducting Polymers 419
11.2.1 Poly(3,4-Ethynedioxythiophene) 420
11.2.2 Polyaniline 427
11.2.3 Polypyrrole 433

11.3 Composites of Graphene Derivatives and Conducting Polymers 439
11.3.1 Poly(3,4-Ethynedioxythiophene) 440
11.3.2 Polyaniline 451
11.3.3 Polypyrrole 452
11.3.4 Other ECPs 457

11.4 Conclusions 459

Index 473
Preface

With the development of nanotechnology and nanomaterials, the arena of electrochemical nanofabrication has expanded significantly. The first version of the book was drafted in 2009. In 2010, the Nobel Prize in Physics was awarded to Prof. Konstantin Novoselov and Prof. Andre Geim from the University of Manchester for groundbreaking experiments regarding the two-dimensional material graphene. Three years later, the European Commission launched the European Union’s biggest-ever research initiative, the Graphene Flagship, with a budget of 1 billion euro. This has boosted the research on graphene globally.

As Nokia’s representative involved in the Graphene Flagship from the very beginning, I believe the two-dimensional wonder materials are defining a new scope of research in electrochemistry. This is also the motivation for us to collect new advances on applying graphene in different electrochemical devices such as electrochemical sensors and energy solutions. In this second edition, the book is enriched with the synthesis of graphene-based materials through electrochemical methods, the applications of graphene in lithium ion and sodium ion batteries, and using graphene composites for different sensing platforms. This will be of great interest to a broad audience in nanotechnology and electrochemistry.

Di Wei