Index

AA see ascorbic acid
AAO see anodized aluminum oxide
AAO templates 25–26, 32–33 conical 25
AB diblock copolymers 67
acetonitrile (ACN) 117
ACN see acetonitrile
activated carbons 264, 285
active materials 15, 20, 60,
179–180, 194, 227, 243,
269, 344, 374–375, 397
adenine 453–454, 458
AFM see atomic force microscope/atomic force microscopy
AgCl 148–149, 154, 158
alignment 62, 68–78, 86, 308
alkane thiols 39
amino acids 255, 448
amorphous materials 397
amorphous ntTiO$_2$ 201–206,
208–209, 211
anaphoresis 382–383
anatase 32, 91–92, 100, 180,
188, 190–192, 195–200,
205–206, 213, 239, 242,
305–307, 367–368,
387–388, 397
anatase TiO$_2$ 32, 92, 195,
199–200, 206, 239, 242,
306–307, 387–388
anatase TiO$_2$ nanotubes
199–200, 206
aniline 12, 23, 34, 36, 122, 418,
428, 430–432, 451–452,
455
electropolymerization of
430–431
aniline monomer 264, 266
anode materials 226–227,
229–230, 239, 242, 244,
346, 369, 381, 386,
390–391, 397
active 381
high-performance 386, 389, 391
anodization 5, 9, 11, 16, 18,
24–27, 30–31, 181–184,
187–190, 192–193, 195,
204–205, 209, 213,
366–368, 383, 387
anodization experiments 182,
188
anodized aluminum oxide
(AAO) 24, 45
AO see ascorbate oxidase
arrays 8–10, 16, 18, 21–28,
30–32, 35–36, 38, 42–43,
60, 62, 70, 78, 80–81,
94–96, 100–102, 425–426
nanoparticle 100–102
synthesized titanium dioxide
62
as-formed ntTiO$_2$ 190,
204–205, 213
ascorbate oxidase (AO) 426, 443
ascorbic acid (AA) 143, 260, 300, 424, 450
atomic force microscope/atomic force microscopy (AFM) 9, 330, 334, 338, 344, 347, 350
Au 298
Au NPs 298–299, 375, 429, 447–448, 450, 456

commercial 369–370
lithium batteries 174, 176, 181, 227, 230–231
rechargeable 335–337
rocking-chair 177, 376
secondary 335–336
battery applications 199, 201, 203, 205, 207, 209, 211, 365, 380–381, 383, 385, 387, 389, 391, 393, 397
battery architectures 365, 376–377, 379

BCP see block copolymers
BCP templating technology 103
binder materials 271
bioelectroanalytical chemistry 149
biomarkers 453–455, 457, 459
biomass 255
biomaterials 293
biosensors 293, 428, 433, 436, 448, 455–456, 459
enzyme-based 426
blend 61, 63, 69, 87
block copolymer architectures 63
block copolymer films 59, 82
block copolymer thin films 67, 69, 71, 73
block copolymers 24, 42, 59–60, 72, 75, 87, 97
bovine serum albumin (BSA) 303, 450, 459
BSA see bovine serum albumin
bulk heterojunction solar cell 60, 96
calcium dobesilate 424, 433
carbon-based materials 270, 294, 388
hard 228–229
nongraphitized 227–228
traditional porous 264
various 264
carbon nanoparticles 126–127
carbon nanostructures 154, 156, 260, 262
carbon spheres, hollow 230, 238
carbonaceous material 270
CCG see chemically converted graphene
cells, nanowire 100
characterization of titania nanotubes layers 188–189, 191, 193, 195, 197
charge transport 97–99, 252, 268, 276, 426
chemical defects 202, 208
chemical industrial processes 146
chemical vapor deposition (CVD) 258–259, 292, 369, 378, 380
plasma-enhanced 369
chemically converted graphene (CCG) 291–292, 294, 296, 298, 300, 302, 304–306, 308, 310, 312, 314, 316
chitosan 424, 429, 448, 450, 454–456
choline 255
citric acid 371, 448, 456
CNTs see carbon nanotubes composites
graphene-based 382
graphene-nanoparticle 293
graphene-porphyrin/phthalo-cyanine 310
graphene–SiO$_2$ 309
polymer-based 294
conducting polymer nanotube 33
conducting polymer nanowires 22–23, 32, 41
synthesis of 22, 35, 113, 117, 123, 128–129, 252
conducting PPy polymer nanowires 85
conducting substrate 62, 75, 81–82, 90
conjugated polymers 252, 256
constant thickness (CT) 86
constant thickness gyroid morphology 88
copolymer block 69, 77
copolymer film 67–68, 70, 72, 75, 77, 79–83, 85, 87, 89, 91, 93, 95
copolymer gyroid morphology 86
copolymers 24, 42, 45, 59–62, 65–69, 72, 75, 77, 80, 87, 97
 copper 8, 10, 19, 142
covalent immobilization 429, 431
crystalline anatase 206
crystalline materials 208
crystalline ntTiO$_2$ 204–206, 208–209, 213
crystalline structure 199–201, 208, 231–232
crystallized ntTiO$_2$ 202–203
CT see constant thickness
Cu$_2$O nanoparticles 350
CV see cyclic voltammetry
CVD see chemical vapor deposition
cylindrical pore size range 79
degree of polymerization 63, 78
devices, nanowire 100, 102
diazonium salts 312–313
diblock copolymers 62, 65, 67, 75, 87
dielectric constant 71–72
dielectric contrast 72–73, 77
DNA biosensors 436–437
DNA probes 436–437
domain spacing 65, 67–68, 70–71, 80
dopamine 424, 450
dopants 3, 39, 125, 267, 427
DSSCs see dye-sensitized solar cells
dye-sensitized solar cells (DSSCs) 30
dynamics of photogenerated electrons 101

electric vehicles 176, 335, 393
electrical double layer capacitors (EDLCs) 270
electroactive material 371
electroactivity 275–276, 385, 427
electroanalytical chemistry 139–140, 163, 291
traditional 163
electrocatalysis 142, 152–153, 155–157, 315
electrocatalysts 39, 156–157, 159
electrocatalytic activity 121, 141, 143, 155
electrochemical anodization 30–31, 195, 213
electrochemical applications 25, 115–116, 129, 252, 336
electrochemical atomic layer epitaxy (EC-ALE) 2–3, 45
electrochemical biosensors 443
electrochemical capacitors (ECs) 269, 271, 274, 420
electrochemical cell 9, 13, 15, 22, 62, 93

electrochemical deposition 7, 15, 27, 36–39, 42, 61, 80, 83–84, 90, 103, 309, 373, 384, 420, 434–435, 437, 454

electrochemical anodization 30–31, 195, 213

electrochemical applications 25, 115–116, 129, 252, 336

electrochemical atomic layer epitaxy (EC-ALE) 2–3, 45

electrochemical biosensors 443

electrochemical capacitors (ECs) 269, 271, 274, 420

electrochemical cell 9, 13, 15, 22, 62, 93

EBSD see electron back scatter diffraction
EC-ALE see electrochemical atomic layer epitaxy
EC-DPN see electrochemical “dip-pen” nanolithography
ECDs see electrochromic devices
ECP see electrically conducting polymer
ECP-carbon materials 459–460
ECP-CNT composites 419–420
ECP-graphene composites 419

ECs see electrochemical capacitors
EDLCs see electrical double layer capacitors
EIS see electrochemical impedance spectroscopic
electric field alignment 71–74, 77

electrochemical deposition methods 7, 39
electrochemical detection 446, 452, 459
electrochemical “dip-pen” nanolithography (EC-DPN) 13
electrochemical etching 11, 15–16, 76, 80–81
electrochemical exfoliation 252, 262, 274–275
electrochemical functionalization 36, 123, 140–141
electrochemical gyroid replication 90
electrochemical impedance spectroscopic (EIS) 420, 444
electrochemical machining 19–20
electrochemical micromachining 17–19
electrochemical nanolithography 9, 11–13
electrochemical oxidation 439
electrochemical polymerization 252–253, 265, 418–420, 426, 441
electrochemical replication 59–62, 64, 66–68, 70, 72, 74–76, 78, 80, 82, 84, 86, 88, 90, 94–96, 98
film-based 62
electrochemical replication of gyroid templates 95
electrochemical replication of self-assembled block copolymer nanostructures 59–60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88
Ti 90
electrochemical technique, bipolar 43, 45
electrochemical window 7, 115–116, 163, 256–257, 269, 274
bipolar 43–44
electrolyte-free 150–151
electrochromic devices (ECDs) 269, 275–276
active 273, 337, 344, 380
composite 269, 344
pseudocapacitive 270
metal 7, 40–41
electrodes
Au 428, 454–456
cycled 211, 213
freestanding thin-film composite 271
gate 23
junction 23
multilayer films 148
nanoarchitectured 389
nanostructured 181
nanotubular titanium dioxide 396
ntTiO$_2$ 201, 207
PEDOT 443
porous 270, 379
screen-printed carbon 454
Index

supercapacitor 272, 274
electron back scatter diffraction (EBSD) 377
electroplating 377–378
localized 12
electrosynthesis 118–119, 122–123, 140–141
emeraldine base 440
emeraldine salt 440
enzymes 426–429, 434, 447, 451, 455, 459
epinephrine 437–438
epoxy resins 294–295, 431
EQE see external quantum efficiency
ethyl 2-bromoacetate 329
excitons 96–97
external quantum efficiency (EQE) 100

FAD see flavin adenine dinucleotide
Faradaic reactions 39, 194–195
FIB see focused ion beam
as-synthesized aligned nanotube 35
composite 34, 97
electrodeposited 40
nanoconical 25
nanoporous AAO template 27
oxide 5, 11, 24, 30, 39, 90, 93, 95, 127, 180–181, 204, 374, 379, 383–384, 390, 451
templated silica 88
flavin adenine dinucleotide (FAD) 448
fluorescent nanomaterials 127–128, 262
focused ion beam (FIB) 19, 43
free energy of mixing 63–64

glassy carbon electrode (GCE) see GCE
grazing incidence small angle X-ray scattering (GISAXS) see GISAXS
GIAXS fitting 91
gluconic acid 434
glucose 432–434, 444, 448, 455
glucose biosensors, amperometric 434
gold 36, 38, 40–41, 68–69, 142
graphene 45, 126–127, 154–155
Congo red-functionalized 310
hydrophobic pristine 384
indolizine-modified 329
inorganic structure-modified 354
Index

ionic liquid-functionalized 311
nitrogen-doped 391
polymer-functionalized 293, 296
pre-synthesized 308
pristine 259, 292
pyridine-functionalized 314
single-sheet 384
two-dimensional 310
undoped 448
graphene-based composite materials 315
graphene-based heterostructures 383
graphene-based materials 259, 296, 315, 328, 335,
337, 339, 341, 343, 345, 347, 354
graphene-based materials research 315
graphene-based nanocomposite 292–293, 295, 297, 299,
301, 303, 305, 307, 309, 311, 313, 328, 354
graphene-based nanosheets 297
graphene-based nanostructures 327
graphene-CdSe QDs 308
as-prepared 308
graphene electrosynthesis 262
graphene fillers 252, 295
graphene films 299, 301,
383–384, 390
seed-modified 299
graphene flakes 256, 261–262,
301
graphene heterostructures 385
graphene nanosheets 154,
156, 274–275, 328, 385,
388–389, 393
graphene networks, three-dimensional 381,
386
graphene oxide 259, 271,
292, 294, 328, 346,
383, 390, 418, 450
graphene paper 265–266, 272
graphene pyridine-functionalized 313
graphene quantum dots hybrids 307
graphene sheets 126–127,
129, 227, 257–258, 262,
264, 293–294, 296,
298–302, 305, 308, 312,
314–315, 328, 330,
338–339, 383, 386
as-prepared 303
conductive 344
diazonium-functionalized 312
functionalized 384
large area 258
graphite 4, 126–127, 178–180,
212, 226–228
graphite oxide 328, 384, 386,
448, 450–451, 455
carboxylated reduced 450, 452
exfoliation of 259
reduction of 451
graphite oxide films 451
grazing incidence small angle X-ray scattering (GISAXS) 90
guanine 449, 453–454, 458

HAADF see high-angle annular dark-field
hard carbon spheres (HCSs) 229
HCSs see hard carbon spheres
HEVs see hybrid electric vehicles
high-angle annular dark-field (HAADF) 300
high-resolution transmission electron microscopy (HRTEM) 228
high temperature annealing 91, 94, 96
highly oriented pyrolytic graphite (HOPG) 7–8, 12, 42
HOPG see highly oriented pyrolytic graphite
host polymeric materials 418
HRTEM see high-resolution transmission electron microscopy
hybrid electric vehicles (HEVs) 172, 176, 225, 232–233, 244, 270, 393
hybrid supercapacitor 195
hybrids
graphene-based 350
graphene-bimetallic 298
graphene-GdS 307
graphene–quantum dots 297
hydrogen storage materials 418
ionic liquid functionalized graphene (ILFG) 267–268, 275–276
ionic liquids see ILs
ionic liquids (ILs) 114–115, 119, 121, 123, 125, 127, 139, 143, 146, 153, 163, 252
iron phthalocyanine 424–425
iron-porphyrin 313–314
ISEs see ion-selective electrodes
L-cysteine 447–448
lamellar microdomains 64, 69, 73
lamellar periods 68–69
LEDs see light-emitting diodes
LiClO$_4$ 426, 443–444
LiFePO$_4$ 391, 393, 395, 398
LIGA technique 15, 17
light-emitting diodes (LEDs) 28
lithiation 206, 229–231, 239
lithium cells 199–200, 204, 206, 209, 373, 375, 379, 389, 396
lithium insertion 177, 181, 195, 198–199, 203–204, 226–227, 387
lithium intercalation 180, 197–198, 200, 202, 234, 387
lithium ion battery cathode materials 391
lithium phosphate 396–397
materials
annealed 201, 208
bulk 17, 67, 87, 96, 196, 259, 270, 336, 366
carbon-based 123, 177, 225, 229, 270, 294, 388
electrodeposited 42, 453
micro-sized 236
mesoporous TiO$_2$ spheres 239–240, 242
metal electrodeposition 40–41
metal nanoparticles 5, 7, 34, 125, 129, 270, 298, 418
metal nanowires 8, 15, 27, 85
metal organic framework (MOF) 313–314, 386, 389
metal oxide nanoparticles 293, 305, 381, 385–386
graphene-encapsulated 383
metal-oxide-semiconductor field effect transistors (MOSFET) 30
metal oxide–graphene composites 386
metal oxides 305, 373, 383, 386
graphene-based 385
methanol 426, 444, 454
methanol electrooxidation 156–157
methylene blue 350
micro-supercapacitor 272
microphase morphology 64, 67, 97
microphase separation 61, 65–66, 77–78
thermodynamics of 78
modified ITO substrate 123–124
MOF see metal organic framework
graphene-metalloporphyrin 313
MOSFET see metal-oxide-semiconductor field effect transistors
MWCNT-modified screen-printed carbon electrodes 425
MWCNTs/MWNTs see multiwalled carbon nanotubes
N-doped graphene 448
N-doped graphene aerogel 306
N-succinimidyl acrylate 141
nanoarchitected materials 381, 385
nanoarchitected titania materials 387
nanoarchitectures, graphene/metal oxide 385
nanocomposites
graphene-NPs 308
graphene-PtAu alloy 303
graphene-Si NPs 308
graphene-metal NPs 298, 301
graphene–TiO$_2$ 306
nanofabrication 1–2, 9, 14–15, 20, 24, 39, 41–43, 45, 59, 113, 139, 171, 223, 251, 291, 327, 365, 387, 417–418, 460
nanoflowers 337
nanoparticles
amorphous TiO$_2$ 306–307
graphene-based 297
graphene/platinum 304
graphene-wrapped TiO$_2$ 306
graphene–metal 297, 301
graphene–metal oxide 297
linker-free graphene/CdSe 308
nanorod arrays 26, 28, 78
nanosheets, graphene-based
titania 387
nanostructured electrode
materials 172, 223–224, 226, 228, 230, 232–244
nanostructured titania 180–181
nanotube arrays 26–27, 30–31, 35, 193, 195
nanotube morphology 27, 187–189, 204, 211–213, 367
nanotubes, titanium oxide 399
nanowire arrays 8, 32, 62, 82, 84, 100
nanowire cell 100
nanowire devices 100, 102
free-standing platinum 83
neutralized ITO glass substrates 85
noncovalent compositing 309
nontoxic materials 270

ODT see order–disorder transition
open-ended nanotubes 26
order–disorder transition (ODT) 64, 66
ordered nanostructures 24, 62
organic electroactive materials 113–114, 116, 118, 120, 122, 124, 126, 128
organic solvents 77, 117–119, 225
conventional 115, 117–119
oriented nanowires 21–22
ORR see oxygen reduction reactions
oxygen reduction reactions (ORR) 313

PANI see polyaniline
PANI films 22, 121–122
PANI nanotubules 34
PANI nanowires 22–23, 33
patterned Au substrate 85–86
PBS see phosphate buffer solution
conducting polymer 278
neat 442, 444
plain 422
PEDOT films 422, 425
charged 425
electropolymerized 448
PEDOT: ILFG nanocomposite films 275
pencil graphite electrode (PGE) 431
PFIL see polyelectrolyte-supported ILs

o-phenylenediamine 433, 454
PFIL-AuNPs 157, 159
PFIL-modified electrode assembly 150–151
PGE see pencil graphite electrode
phosphate buffer solution (PBS) 435, 437, 439, 441, 444–445, 447, 451
physical vapor deposition (PVD) 8, 204
phytahormones 457
PLD see pulsed laser deposition
PLL see poly-L-lysine
PMMA homopolymer 70, 84–85
poly-L-lysine (PLL) 296
polyaniline 274, 294–295, 346, 419, 427, 429, 451
polyaniline (PANI) 12, 21, 33–36, 38–39, 84, 117, 121–124, 128, 141
polyelectrolyte 119, 143, 146–147, 150, 157, 160, 296
polyethyleneimine 384
polymer composites 123, 125, 127, 293–296, 309, 417
polymer films 34, 128, 269
polymer matrix 34, 62, 82–83, 419, 443, 451
polypyrrole 12, 21, 23, 33, 42, 150
polypyrrole films 118
polystyrene 36, 79–80
porous gyroid 87–88, 90
porous gyroid morphology 88
PPP see poly(para-phenylene)
proteins 303, 447, 455–456
protons 336
Prussian blue 148
pseudocapacitors 270
pulsed laser deposition (PLD) 397
PVD see physical vapor deposition
pyridine 308, 313–314, 329
pyridinium salt 329–332
pyrrole 372, 418, 434, 436–439, 452, 454
QDs see quantum dots
QHE see quantum Hall effect
quantum dots (QDs) 194, 307
quantum Hall effect (QHE) 292, 328
random copolymer brushes 69
recombination events 101–102
RGO see reduced graphene oxide
rhodamine 350, 458
room-temperature ionic liquids (RTILs) 254
RTILs see room-temperature ionic liquids
rutile 305, 367, 387
rutin 443
SAMs see self-assembled monolayers
scanning electron microscopy (SEM) 74
scanning probe microscopy (SPM) 9
scanning tunneling microscopy (STM) 9
screen-printed carbon electrodes (SPCE) 425, 454
SDBS see sodium dodecyl benzene sulfonate
SDS see sodium dodecyl sulfate
secondary ion mass spectroscopy (SIMS) 68
SEI see solid electrolyte interface
selective degradation 62
self-assembled monolayers (SAMs) 11, 24, 39, 45
self-organized TiO$_2$ nanotubes 186, 189, 212–213, 373, 383, 393–394, 396
SEM see scanning electron microscopy
semiconducting nanocompounds 4–5
semiconductors 4, 7, 9, 11, 27, 30, 38, 44, 102
sensors
chemical 418, 433, 439
chemical field-effect transistor 426
electrochemical 293, 418–420
nitrite 444
non-enzymatic H$_2$O$_2$ 429
SERS see surface-enhanced Raman scattering
silicon 11, 19, 22, 40, 82, 142, 183, 191, 199, 204
silicon substrates 11, 68, 189–190, 213
SIMS see secondary ion mass spectroscopy
single crystal substrates 2
single-walled carbon nanotubes (SWNTs/ SWCNTs) 36, 123–124, 140–141, 153–155, 329, 426, 428, 434, 437
Sn nanoparticles 229–230, 238, 349
sodium dodecyl benzene sulfonate (SDBS) 309
sodium dodecyl sulfate (SDS) 305, 437
nanostructured 62, 194
photoelectrochemical 193
solid electrolyte interface (SEI) 179, 341, 348
SPCE see screen-printed carbon electrodes
spherical voids 36–37
SPM see scanning probe microscopy
square wave anodic stripping voltammetry (SWASV) 452
STM see scanning tunneling microscopy
structural compression 91
supercapacitor materials 270
surface-enhanced Raman scattering (SERS) 297
surface-grafted brush 73
SWASV see square wave anodic stripping voltammetry
SWNTs/ SWCNTs see single-walled carbon nanotubes
Index | 485

TEM see transmission electron micrograph/transmission electron microscopy
templates 21, 24–27, 32–33, 35–39, 41–42, 45, 59, 61, 75–81, 83, 85–87, 89–91, 93, 95, 97, 296, 308, 370, 384
bicontinuous gyroid copolymer 86
carbon nanotube 35
copolymer 76, 83
latex 36–38, 45
molecular 41, 77, 79, 97
PMMA 79, 85
polymer 38, 83, 90–91, 94
porous PS 86
TiO\(_2\) see titanium dioxide
TiO\(_2\) arrays 31, 101–102
TiO\(_2\) nanotube arrays 30–31, 193, 195
self-assembled 182–183, 185, 187
TiO\(_2\) nanowires 32, 369
titania 190, 193–194, 205
nanostructured 180–181
titania nanotube layer 189, 203, 205, 212–213
titania nanotubes 188–189, 191, 193, 195, 197, 199, 203, 206–208, 211, 383, 388, 398
self-organized 207
titanium 30, 32, 182, 184–185, 191, 196–198, 202, 204, 213, 227
titanium dioxide (TiO\(_2\)) 27, 30–31, 45, 95, 98–99, 178, 180, 182, 185, 190, 192–200, 204–205, 209–211, 242
titanium oxides 195
transition metals 98, 225, 230–232
transmission electron micrograph/transmission electron microscopy
(TEM) 3, 330, 334, 338–339, 344, 347, 350, 368
water-ethylene glycol system 298
wet chemical method 299
X-ray diffraction (XRD) 188
X-ray photoelectron spectroscopy 330, 332
XRD see X-ray diffraction
zinc oxide (ZnO) 5, 27, 30, 45
ZnO see zinc oxide
ZnO films 28
ZnO nanowire 29
“This book provides an innovative and thought-provoking view of electrochemical processes in nanofabrication. A comprehensive overview of the field is complemented by focused coverage of niche specialist topics involving metallic, oxide and polymeric materials in diverse combinations and complex interfacial architectures. A pedagogical approach to the central fundamental concepts allows the non-specialist to appreciate the significance of some perceptive subsequent analytical critique. Excellent use of illustrative material assists appreciation of the synergy between the novel fundamental science and its application in practical devices. This is an excellent book for those working in the field and others considering entering it.”

Prof. A. Robert Hillman
University of Leicester, UK

Nanotechnology has attracted billions of dollars in venture capital from research institutes, governments, and industries in recent years. Traditional nanofabrication techniques such as CVD, sol–gel, and self-assembly have been intensively studied. However, the electrochemical nanofabrication technique, which offers huge benefits for manufacturing nanomaterials as well as broad applications in industries, has not been given much attention compared with the traditional nanofabrication methods. This book fits the niche of such technology because it summarizes various electrochemical nanofabrication methods and shows their various essential applications in areas such as batteries, sensors, and many future technologies.

With the development of nanotechnology and nanomaterials, the arena of electrochemical nanofabrication has expanded significantly. The first edition of this book was drafted in 2009. In 2010, the Nobel Prize in Physics was awarded to Prof. Konstantin Novoselov and Prof. Andre Geim from the University of Manchester for their groundbreaking experiments on the two-dimensional material graphene. Three years later, the European Commission launched the European Union’s biggest ever research initiative, the Graphene Flagship, with a budget of 1 billion euros. In light of these developments, the new edition of the book is enriched with the synthesis of graphene-based materials through electrochemical methods, the applications of graphene in lithium-ion and sodium-ion batteries, and the use of graphene composites in various sensing platforms. It will be of immense interest to a broad audience in nanotechnology and electrochemistry.

Di Wei is a senior member of Wolfson College at the University of Cambridge and senior researcher at Nokia Technologies. He was also nominated docent (adjunct professor) at Åbo Akademi University, Finland, in 2014. He has been Nokia’s principal investigator in energy work package within the European Union’s Graphene Flagship since 2013. His research covers organic electronics, sensors, and energy solutions (photovoltaics, supercapacitors, and batteries). In addition to contributing to over 50 peer-reviewed journal publications, 10 conference proceedings, 5 keynotes, and 50 international patents, Dr. Wei has written chapters for 4 books on the topics of nanotechnology and electrochemistry.