“Automotive Engine Metrology is an advanced and excellent work on precise and accurate two- and three-dimensional measurement techniques for the surface metrology of industrial equipment, engine inner surface quality evaluation, and fault diagnosis.”

Prof. Hassan H. Dadoura
Helwan University, Egypt

“This book excellently illustrates the interrelation between the fields of dimensional metrology and automotive engineering. I strongly recommend the book.”

Prof. Monir M. Koura
Ain Shams University, Egypt

Metrology has garnered a great deal of scientific interest in the recent decades owing to its unique advanced soft engineering techniques in design and diagnostics. Used in a variety of scientific applications, these techniques are now widely regarded as safer, more efficient, and more effective than the traditional ones.

This book compiles and details the cutting-edge research in science and engineering from the Egyptian Metrology Institute (National Institute for Standards), under the umbrella of the Egyptian Ministry of Higher Education and Scientific Research, which is currently revolutionizing advanced dimensional techniques through the development of coordinate and surface metrology for accurate and precise engineering. Authored by Prof. Salah H. R. Ali, a prominent researcher in micro- and nanotechnology and automotive metrology, this book will appeal to anyone involved in dimensional metrology, measurement strategies, accurate and precise measurement science, coordinate metrology, CMM error separation, CMM verification, Talyrond accuracy, new and overall engine efficiency, warm-up engine diagnosis, or manufacturing quality of automotive engine research in the area of engine machining and coating surface.

Salah H. R. Ali is professor and head of the Engineering and Surface Metrology Department, National Institute for Standards, Egypt. A prominent automotive metrology researcher, he obtained his BSc and MSc in automotive engineering from Helwan University and his PhD in mechanical design and production engineering from Cairo University in 2003. He teaches undergraduate and postgraduate (PhD, MSc, and MEng) students and is an academic advisor for several MSc and PhD students at various universities. Prof. Ali has published more than 75 research papers in national and international journals/conference presentations, 2 book chapters, and 2 patents—2 more being under registration. He reviews drafts for Egyptian standards and research papers for several international journals, is on the editorial board of many others, and is a member of the scientific communities of international conferences. He has been invited to and has participated as keynote speaker and session chair in numerous conferences. Prof. Ali has been elected a secretary in the Egyptian National Committee for Theoretical and Applied Mechanics. He is also a fellow and member in scientific societies of mechanical engineers. His current research interests include precision engineering, advanced coordinate and surface metrology, auto metrology, tribology, and nanomaterial technology.
Automotive Engine Metrology
Automotive Engine Metrology

Salah H. R. Ali
To Egypt and the World

To the soul of my parents, my mother, Hakemah Ahmad El-Banna, and my father, Hamed Ramadan Ali

To my respected professors, and teachers

To my lovely wife, Hayam, our son, Amr, and our daughter, Maryam

To all those who helped me in my career and to my colleagues at the National Institute for Standards, the Academy of Scientific Research and Technology, and the Ministry of Higher Education and Scientific Research in Egypt

To my postgraduate and undergraduate students, production and quality engineers, automotive engineers, metrology engineers, each researcher and science student, and all interested.

Salah H. R. Ali
Contents

Preface xiii

Part 1: Introduction

1. **Introduction**
 1.1 Automotive Engine Metrology
 1.2 Engineering Metrology
 1.3 Quality Challenges in Automotive Engineering
 1.4 Metrology Laboratory
 1.5 Automotive Engineering
 1.5.1 Types of Automotive Engines
 1.5.2 Performance of Automotive Engine
 1.6 Conclusion

Part 2: Advanced Metrology Techniques

2. **Advanced Measurement Techniques in Surface Metrology**
 2.1 Advanced Measuring Techniques
 2.1.1 Mechanical Contact Stylus Techniques
 2.1.1.1 CMM coordinate technique
 2.1.1.2 Roundness instrument
 2.1.1.3 Roughness measurement technique
 2.1.2 Optical Measurement Techniques
 2.1.2.1 White-light interference microscopy
 2.1.2.2 Confocal optical microscopy
 2.1.2.3 Confocal white light microscopy
 2.1.2.4 Scanning electron microscopy
 2.1.2.5 Digital holography technique
 2.2 Non-Optical Measurement Techniques
 2.2.1 AFM Technique

27
2.2.2 3D-CT Technique 52
2.3 Overlapping, Limitations, Sampling, and Filtering of Existing Techniques 54
 2.3.1 Overlapping 54
 2.3.2 Limitations 55
 2.3.3 Sampling and Filtering 56
2.4 Surface Characterization 57
 2.4.1 Applications in the Mechanical Engineering 57
 2.4.2 Other Applications 61
2.5 Uncertainty 66
2.6 Conclusion 68

PART 3: PERFORMANCE OF CMM METROLOGY TECHNIQUE

3. Characterization of Touch Probing System in CMM Machine 83
 3.1 Types of CMM Probes 84
 3.1.1 Hard Probe 84
 3.1.2 Trigger Probe 84
 3.2 Analytical Model 87
 3.2.1 CMM Probe Ball Tip Error 87
 3.2.2 Results of Analytical Model 89
 3.3 Experimental Work 90
 3.3.1 Verification of CMM Stylus System 91
 3.3.2 Experimental Procedure 91
 3.3.3 Parametric Study of Stylus Design 93
 3.3.4 Measurement Density 93
 3.3.4.1 Stylus tip size 4.0 mm 95
 3.3.4.2 Stylus tip size 2.5 mm 95
 3.3.4.3 Stylus tip size 1.5 mm 95
 3.4 Analysis of the Obtained Uncertainty 96
 3.5 Experimental Results and Discussions 97
 3.5.1 Effect of Probe Stylus Tip Size 98
 3.5.2 Effect of Probing Speed 102
 3.6 Conclusion 102
4. **Error Separation of Touch Stylus System and CMM Machine**

4.1 Experimental Work
 4.1.1 Verification of CMM Machine
 4.1.2 Parametric Study of CMM and Stylus Design

4.2 Analysis of Experimental Results

4.3 Validation of Experiments
 4.3.1 Total Measurement Errors
 4.3.2 Stylus System Errors
 4.3.3 CMM Machine Errors
 4.3.4 Other Measurement Errors

4.4 Conclusion

5. **Measurement Strategies of CMM Accuracy**

5.1 Introduction

5.2 Background and Motivation
 5.2.1 Types of Errors
 5.2.2 Fitting Algorithm

5.3 Experimental Work
 5.3.1 General
 5.3.2 Dynamic Calibration of Stylus System
 5.3.3 Test Procedure

5.4 Result Presentation and Discussion
 5.4.1 Probe Scanning Speed 5 mm/s
 5.4.2 Probe Scanning Speed 10 mm/s
 5.4.3 Probe Scanning Speed 15 mm/s
 5.4.4 Probe Scanning Speed 20 mm/s
 5.4.5 Probe Scanning Speed 25 mm/s
 5.4.6 Probe Scanning 30 mm/s
 5.4.7 Probe Scanning 35 mm/s
 5.4.8 Probe Scanning Speed 40 mm/s
 5.4.9 Probe Scanning Speed 45 mm/s

5.5 Statistical Analysis
 5.5.1 Standard Deviation Average of Roundness Measurement Error
5.5.2 Roundness Error of Scanning Speed Response
5.6 Conclusions

6. Validation Method for CMM Measurement Quality Using Flick Standard
6.1 Introduction
6.2 Experimental Work
 6.2.1 Dynamic Verification of Probing System
 6.2.2 Flick Standard Artifact
 6.2.3 CMM Measurement Procedures
6.3 Measurement Results and Discussion
 6.3.1 Least Square Fitting Technique
 6.3.2 Minimum Element Fitting Technique
 6.3.3 Minimum Circumscribed Fitting Technique
 6.3.4 Maximum Inscribed Fitting Technique
6.4 Statistical Analysis
 6.4.1 The Error in Diameter Measurement
 6.4.2 The Error in Roundness Measurement
 6.4.3 Uncertainty Evaluation
 6.4.3.1 Repeatability
 6.4.3.2 Resolution
 6.4.3.3 Indication error
 6.4.3.4 Temperature
6.5 Conclusions

PART 4: PERFORMANCE OF TALYROND METROLOGY TECHNIQUE

7. Factors Affecting the Performance of Talyrond Measurement Accuracy
7.1 Introduction
7.2 Background and Motivation
 7.2.1 Fitting Filters
 7.2.2 Fitting Spectral Wave Responses
 7.2.3 Fitting Algorithms
7.2.4 Types of Errors 188
7.3 Experimental Work 189
7.4 Results and Discussion 191
 7.4.1 The Effect of Fitting Filters 191
 7.4.2 The Effect of Gaussian Filter and Fitting Techniques 193
 7.4.3 The Effect of 2CR Filter and Fitting Techniques 195
7.5 Analysis and Estimation of Roundness Accuracy 197
7.6 Conclusion 199

PART 5: METROLOGY IN AUTOMOTIVE ENGINES

8. Metrology as an Inspection Tool in New or Overhauled Water-Cooled Diesel Engines 205
 8.1 Introduction 205
 8.2 Engine Inspection Program 207
 8.2.1 Engine General Specifications 208
 8.2.2 Cylinder Liner Inspection 208
 8.2.3 Valve Lapped Area Inspection 210
 8.2.4 CMM Verification 210
 8.2.5 CMM Measurement Strategy 211
 8.3 Experimental 211
 8.3.1 Cylinder Block Measurements 212
 8.3.2 Cylinder Head Measurements 212
 8.3.3 Valve Measurements 214
 8.3.4 Piston and Ring Measurements 215
 8.3.5 Measurement of Engine Performance 216
 8.4 Uncertainty in Measurements 216
 8.5 Results and Discussion of Engine Inspection 219
 8.5.1 Results of Dimensional Deviations 220
 8.5.2 Results of Form Deviations 220
 8.5.3 Results of Location Deviations 222
 8.5.4 Results of Engine Compression Pressure 222
 8.6 Conclusion 225

9.1 Introduction

9.2 Cylinder Forces and Surface Measurements
 9.2.1 Dynamic Friction Force
 9.2.2 Surface Friction Measurements

9.3 Uncertainty Assessment of Measurements

9.4 Results and Discussion
 9.4.1 Out-of-Roundness Measurement Results
 9.4.2 Concentricity Measurements
 9.4.3 Out-of-Straightness Measurement Results

9.5 Conclusions

10. Surface Metrology in Engine Quality

10.1 Engine Quality Using Metrology Techniques
 10.1.1 CMM Metrology Technique
 10.1.2 AFM Metrology Technique
 10.1.3 Scanning Electron Microscopy Technique
 10.1.4 Transmission Electron Microscopy Technique

10.2 Tribological Behavior

10.3 Coated Surface Characterization

10.4 New Applied Technology in Engine Coating Surfaces

10.5 Machining Characteristics of Engine Cylinder Surface

10.6 Conclusion

PART 6: CONCLUSIONS AND FEEDBACK FOR FUTURE

11. Conclusions, Recommendations, and Future Work

11.1 Conclusions

11.2 Recommendations

11.3 Future Work

Index
Preface

Advanced soft metrology techniques play an important role in improving the *quality* and *function* of automotive engines with regard to both manufacturing and diagnostic processes. Advanced accurate and precise measurement techniques are based on two fundamental approaches: hard measurement techniques and soft measurement techniques. Advanced soft computing measurement techniques include a coordinate measuring machine (CMM), Talyrond roundness tester, surface roughness device, interferometric methods, confocal optical microscopy, scanning probe microscopy, and computed tomography technique at the micro- and nanometer scales. Now, utilizing the CMM or the Talyrond machine is a challenge for advanced coordinate metrology in modern engineering applications, especially in automotive and aerospace industries. Deviation from dimensional tolerance or geometrical features can produce a number of engineering problems, vibration, frictional wear, noise, material fatigue, and failure. The basic function of the CMM is to measure the actual dimension and geometrical shape of an object according to the ISO and evaluate the collected data using the metrological aspects of size, form, location, and orientation.

In this book, we focus on advanced coordinate measurement machines and their performance with respect to accurate and precise measurements for automotive engine metrology. The book is organized into six parts. The first part presents the general introduction, the objective of the book, and its usefulness for academic scientists and professional and general readers. The second part introduces the important industrial subject of advanced soft measurement techniques for dimensional and surface metrology in micro- and nanometer scales. The third part discusses the performance and error analysis methods of the CMM as a new common technique for dimensional and surface metrology in the industry. The fourth part studies error analysis
and roundness determination using the Talyrond technique. The fifth part discusses the inspection and diagnosis of new, overhauled, and worn-out automotive engines using the CMM technique. It also discusses the applications of surface metrology in quality control for automotive engines. New technologies for engine coating and surface characterization are also presented. The last part, Part 6, discusses the developments in the field and future prospects.

It is hoped that the book will encourage the development of techniques in instrumentation metrology for automotive engines and strengthen readers’ understanding of the importance of metrology in automotive engines.

Salah H. R. Ali, PhD
Professor Doctor Engineer
Engineering and Surface Metrology Department
National Institute for Standards, Giza, Egypt
April 2017