“This timely book nicely summarizes the few, currently known, mechanisms underlying photobiomodulation (PBM) in the context of their most promising applications within a wide variety of health care disciplines. Its perspectives range from enthusiastic acceptance and promotion of PBM applications to the more healthy encouragement of still much needed clinical research.”

Dr. Donald Pathoff
Foundation for Photobiomodulation Research, USA

“Laser therapy is today a reality for professionals in health care. At the same time, it is still a hot topic for research with many challenges to be overcome. This book puts together fundamental concepts and applications in a single resource, creates opportunities to multiply the potential users, and provides a summary of the state of the art in the field. The authors are prominent in their fields, for which the book will certainly prove to be an important reference.”

Prof. Vanderlei S. Bagnato
University of São Paulo, Brazil

Low-level laser (light) therapy (LLLT) and photobiomodulation (PBM) are almost 50 years old and recently have been getting increasing acceptance from the scientific, medical, and veterinary communities. Discoveries are constantly being made about the cellular and molecular mechanisms of action, the range of diseases that can be treated is rising, and home-use LED devices are becoming common.

This book compiles cutting-edge contributions from the world’s leading experts in LLLT and PBM. The chapters cover general concepts, mechanisms of action, in vitro studies, pre-clinical animal studies, veterinary applications, and a wide range of clinical topics. The book appeals to anyone involved in the basic science, translational aspects, and clinical applications of LLLT and PBM.

Michael R. Hamblin is a principal investigator at the Wellman Center for Photomedicine at Massachusetts General Hospital, Boston, USA, and an associate professor of dermatology at Harvard Medical School and the Harvard-MIT Division of Health Science and Technology, Massachusetts, USA. His research interests lie in the areas of photodynamic therapy and LLLT.

Marcelo Victor Pires de Sousa is founder and chief scientist at Bright Photomedicine, São Paulo, Brazil. He received his PhD on the topic “Physics Applied to Neuroscience” from the Institute of Physics, University of São Paulo, Brazil, and is involved in the development of new products and dissemination of photomedicine.

Tanupriya Agrawal obtained her MD from Netaji Subhash Chandra Bose Government Medical College, Jabalpur, India, and a PhD in biomedical sciences from Creighton University, Omaha, Nebraska. She is a visiting postdoctoral fellow at Dr. Hamblin’s lab at the Wellman Center for Photomedicine. She is also a trainee pathology resident at Tufts Medical Center, Boston, USA.
Handbook of Low-Level Laser Therapy

edited by
Michael R. Hamblin
Marcelo Victor Pires de Sousa
Tanupriya Agrawal
To my beautiful wife Angela to whom I have been devoted for thirty-six years

—Michael R. Hamblin

To my beloved wife Vivianne with whom I celebrate this book and all other achievements

—Marcelo Victor Pires de Sousa

Dedicated to my parents, my beloved husband, and my daughter, Aashi

—Tanupriya Agrawal
Contents

Preface

1 What is Low-Level Laser (Light) Therapy?
 Marcelo Victor Pires de Sousa
 1
 1.1 Introduction 1
 1.2 Fundamental Science: Optics, Photochemistry, and Photobiology 5
 1.2.1 Tissue Optics 6
 1.2.2 Photochemistry of Chromophores 7
 1.2.3 Photobiology: Mechanisms of LLLT Effects 8
 1.3 Research in LLLT 9
 1.4 Clinical and Biomedical Applications of LLLT 11

2 History of Low-Level Laser (Light) Therapy
 Michael R. Hamblin

3 Lasers, LEDs, and Other Light Sources
 James Carroll
 3.1 Introduction 35
 3.2 State of the Art 37
 3.3 History of Devices 38
 3.4 Nomenclature 38
 3.5 Laser Classification 39
 3.6 Light Sources and Properties 40
 3.6.1 Different Properties of Laser and LED Light Sources 40
 3.6.1.1 Wavelength 40
 3.6.1.2 Coherence 42
 3.6.1.3 Power 42
Contents

3.6.1.4 Irradiance 42
3.6.1.5 Penetration 43
3.6.1.6 Pulses 44
3.6.1.7 Collimation 46
3.6.1.8 Spectral Width (Monochromaticity) 47
3.6.1.9 Stability 47
3.6.1.10 Polarization 47
3.6.1.11 Beam Area 48
3.6.1.12 Scanning vs. Contact Method 48
3.7 Summary on Light Sources and Properties 49

4 Is Coherence Important in Photobiomodulation? 51
 Tomas Hode
 4.1 Introduction 51
 4.2 Is Coherence Lost Upon Entering Tissue? 53
 4.2.1 How Fast is Too Fast? 55
 4.3 What Biological Significance Could Speckles Have? 56
 4.3.1 Intensity Thresholds 56
 4.3.2 Polarization 58
 4.3.3 Dynamic Environment 60
 4.4 Summary 61

5 Tissue Optics 67
 Bryan James Stephens and Linda Ramball Jones
 5.1 Optical Properties of Tissues 67
 5.1.1 Tissue with Weak Scattering 68
 5.1.2 Tissue with Strong (Multiple) Scattering 68
 5.1.3 Full Picture of Penetration 70
 5.1.4 Optical Properties of Water 70
 5.1.5 Optical Properties of Blood 73
 5.1.6 Spectral Variation of Optical Properties 74
 5.2 Methods and Algorithms for the Measurement of Optical Parameters of Tissues 77
 5.2.1 Integrating Sphere Technique 78
 5.2.2 Kubelka–Munk Model 78
 5.2.3 Inverse Methods 79
 5.3 Methods and Algorithms for the Simulation of the Light Interactions within Tissues 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1</td>
<td>Monte Carlo Simulation</td>
<td>80</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Optical Tissue Phantoms</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>Practical Implementation</td>
<td>83</td>
</tr>
<tr>
<td>6</td>
<td>Light–Tissue Interaction and Light Dosimetry</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Ana Carolina de Magalhães and Elisabeth Mateus Yoshimura</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Light–Tissue Interactions</td>
<td>87</td>
</tr>
<tr>
<td>6.2</td>
<td>Light Dosimetry</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>Mitochondrial Light Absorption and Its Effect on ATP Production</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Nicolette Houreld</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Mitochondria</td>
<td>102</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Adenosine Triphosphate (ATP) Synthesis</td>
<td>102</td>
</tr>
<tr>
<td>7.2</td>
<td>Phototherapy</td>
<td>104</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Effect of Phototherapy on Mitochondria and ATP Synthesis</td>
<td>105</td>
</tr>
<tr>
<td>7.3</td>
<td>Conclusion</td>
<td>113</td>
</tr>
<tr>
<td>8</td>
<td>Water as a Photoacceptor, Energy Transducer, and Rechargeable Electrolytic Bio-battery in Photobiomodulation</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Luis Santana-Blank, Elizabeth Rodriguez-Santana, Jesús A. Santana-Rodríguez, Karin E. Santana-Rodríguez, and Heberto Reyes-Barrios</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>120</td>
</tr>
<tr>
<td>8.2</td>
<td>Absorption and Transport of Light Energy by Water</td>
<td>122</td>
</tr>
<tr>
<td>8.3</td>
<td>Photo-Infrared Pulsed Biomodulation</td>
<td>125</td>
</tr>
<tr>
<td>8.4</td>
<td>Water Oscillator Paradox</td>
<td>126</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Bulk Water</td>
<td>127</td>
</tr>
<tr>
<td>8.4.1.1</td>
<td>Application I: Light energy absorption and enhanced ATP</td>
<td>127</td>
</tr>
<tr>
<td>8.4.1.2</td>
<td>Application II: Light-modulated biomolecular motors and pumps in aqueous media</td>
<td>128</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Confined-Space Water</td>
<td>129</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Interfacial Water: What is EZ?</td>
<td>130</td>
</tr>
<tr>
<td>8.5</td>
<td>Metabolism and Scaling Laws</td>
<td>134</td>
</tr>
<tr>
<td>8.6</td>
<td>Conclusion</td>
<td>134</td>
</tr>
</tbody>
</table>
9 Role of Reactive Oxygen Species in Low-Level Laser Therapy

Vikrant Rai

9.1 Mitochondrial Response to LLLT 142
9.2 LLLT-Induced Production of ROS 143
 9.2.1 Cytochrome 143
 9.2.2 Flavins 144
 9.2.3 Porphyrins 145
9.3 Role of Reactive Oxygen Species 148
 9.3.1 Oxidative Stress at Cellular Level Due to ROS 148
 9.3.2 Antioxidant Effect of LLLT 149
 9.3.3 Cellular Response to Increased ROS (Oxidative Stress) 149
 9.3.4 Response of Various Transcription Factors to Oxidative Stress 151
 9.3.5 ROS-Mediated Effect of LLLT on Nervous System 153
 9.3.6 ROS-Mediated Apoptosis 155
 9.3.7 ROS Effect on Thrombosis and Hemostasis 156
 9.3.8 ROS-Mediated Effect of LLLT on Musculoskeletal System 157
 9.3.9 ROS-Mediated Effect of LLLT on Oral Cavity 158
 9.3.10 ROS-Mediated Effect of LLLT on Lungs 158

10 Molecular Basis for Photobiomodulation: Light-Induced Nitric Oxide Synthesis by Cytochrome c Oxidase in Low-Level Laser Therapy

Robert Oliver Poyton and Marina Hendrickson

10.1 Introduction 165
10.2 Cytochrome c Oxidase: A Photoreceptor for LLLT 166
10.3 Structure/Function of Mitochondrial Cytochrome c Oxidase 167
10.4 Enzymatic Activities of Cytochrome c Oxidase 169
 10.4.1 Regulation of Cox/H₂O Activity 170
 10.4.2 Regulation of Cox/NO Activity 171
10.5 Low-Intensity Light Stimulates Cox/NO but Not Cox/H₂O Activity 173
10.5.1 Possible Mechanism for Light Stimulation of Cox/NO 173
10.6 Cox/NO, NO, and LLLT 174
10.7 Summary 177

11 Cytoprotective Effect of Low-Level Light Therapy using LEDs on Neurons 185
Margaret Wong-Riley and Huan Ling Liang
11.1 Introduction 186
11.2 Role of Cytochrome c Oxidase in Photobiomodulation of Cultured Visual Cortical Neurons 186
11.3 Neuroprotective Effect of 670 nm LED on Primary Neurons Inactivated by Cyanide 190
11.4 Neuroprotective Effect of 670 nm LED on Primary Neurons Poisoned by MPP+ and Rotenone: Implications for Parkinson's Disease 193
11.5 Neuroprotective Effect of Pretreatment with 670 nm LED on Primary Neurons Exposed to KCN, Rotenone, or MPP+ 196
11.6 Neuroprotective Effect of 670 nm LED on Cytochrome c Oxidase Activity of Deprived Visual Cortex of Monocularly Enucleated Rats 199
11.7 cDNA Microarray Analysis of Genes Up- and Down-Regulated by 670 nm LED in Deprived Visual Cortex of Monocularly Enucleated Rats 201
11.8 Conclusion 203

12 Low-Level Laser and Cultured Neural Tissue 207
Patricia J. Armati and Roberta T. Chow
12.1 Why Use Cell or Tissue Culture Models? 207
12.2 Cell Lines 208
12.3 Specific Characteristics of Nervous System Cells 209
12.4 LLL, Cell Culture, and Peripheral Nervous System 211
12.5 Delivery of LLL to Neural Tissue in Culture 215
12.6 LLL Irradiation of Cultured Sensory Neurons in Pain-Related Studies 215
12.7 Low-Level Laser: Excitatory or Inhibitory 216
12.8 Dorsal Root Ganglion Cultures of Nociceptor Neurons 218
12.9 LLL Effects on Sympathetic Nervous System Neurons 224
12.10 Central Nervous System in Culture 225

13 Shining a Light on Parkinson’s Disease 237
Daniel McKenzie Johnstone, Cécile Moro, Jonathan Stone, Alim-Louis Benabid, and John Mitrofanis
13.1 Introduction 238
13.2 Overview of Parkinson’s Disease 238
13.3 Evidence for Neuroprotection by NIR Treatment in Parkinson’s Disease 239
13.4 How Does NIR Work to Neuroprotect: Two Mechanisms of Action? 244
13.5 NIR Treatment in Parkinson’s Disease Patients: Can It Work? 245
13.6 Developing Methods for Intracranial NIR Delivery 247
13.7 Conclusion 247

14 Low-Level Laser Therapy and Stem Cells 253
Qi Zhang, Chang Zhou, and Tingting Dong
14.1 Mechanisms of LLLT Action in Stem Cells 254
14.1.1 Low-Level Laser Irradiation 254
14.1.2 Mechanisms of LLLT 254
14.1.3 Effects of LLLT 256
14.2 Effects of LLLT on Stem Cells 258
14.2.1 Hematopoietic Stem Cells 258
14.2.2 Mesenchymal Stem Cells 259
14.2.3 Adipose-Derived Stem Cells 261
14.3 Clinical Applications of LLLT on Stem Cells 261
14.3.1 LLLT for Stem Cell Transplantation 261
14.3.2 LLLT for Wound Healing and Skin Restoring 262
14.3.3 LLLT for Neural Regeneration 263
14.3.4 LLLT for Treatment of Hair Loss 264
15 Antimicrobial Photodynamic Therapy
Vanderlei Salvador Bagnato, Cristina Kurachi, Kate Cristina Blanco, and Natalia Mayumi Inada

16 Low-Level Laser (Light) Therapy for Wound Healing in Animal Models
André Luiz Oliveira Ramos, Felipe Scholz Ramos, and Marcelo Victor Pires de Sousa
16.1 Physiology of Wound Healing
16.1.1 Mechanisms of Wound Healing with LLLT
16.1.2 Types of Wound Healed by LIB
16.2 Thrombosis
16.3 LLLT Influence on Infected Wounds

17 Low-Level Laser Therapy for Arthritis in Animal Models: Beneficial Effect and Action Mechanism
Flavio Aimbire and Paulo de Tarso Camilo de Carvalho

18 Low-Level Laser Therapy for Lung Diseases: From the Bench to the Bed
Flavio Aimbire
18.1 Introduction
18.2 Asthma
18.2.1 Clinical Studies
18.2.2 Experimental Studies
18.3 Acute Respiratory Distress Syndrome
18.3.1 Clinical Studies
18.3.2 Experimental Studies
18.4 Chronic Obstructive Pulmonary Disease
18.4.1 Clinical Studies
18.4.2 Experimental Studies
18.5 Pneumonia
18.5.1 Clinical Studies
18.6 Tuberculosis
18.6.1 Clinical Studies

19 Low-Level Laser (Light) Therapy in Tendon Healing in in Vitro and in Vivo Models
Lucas F. de Freitas and Michael R. Hamblin
19.1 Introduction
19.2 Low-Level Light Therapy and Inflammation 344
19.3 Applications of Low-Level Light in Tendon Healing 346
 19.3.1 In Vitro Studies 346
 19.3.2 In Vivo Studies 347
 19.3.3 LEDs Used in Tendon Healing 351
19.4 Conclusion 352

20 Bone Repair in Animal Models 357
Antonio Luiz B. Pinheiro, Luiz G. Pinheiro Soares, and Aparecida Maria C. Marques
20.1 Introduction 357
 20.1.1 Bone Tissue 357
 20.1.2 Autologous Bone Grafting and Biomaterials 359
 20.1.3 Guided Bone Regeneration 360
 20.1.4 Phototherapy 361
20.2 Light Therapies in the Bone Repair of Animal Models 361
20.3 Closing Remarks 364

21 Transcranial Low-Level Laser (Light) Therapy for Stroke and Traumatic Brain Injury in Animal Models 371
Michael R. Hamblin, Luis De Taboada, and Ying-Ying Huang
21.1 Introduction 372
21.2 Photobiology of Low-Level Laser Therapy 373
21.3 LLLT on Neuronal Cells 375
21.4 Human Skull Transmission Measurements 376
21.5 Epidemiology of Stroke 378
21.6 Mechanisms of Brain Injury after Stroke 379
21.7 Thrombolytic Therapy of Stroke 381
21.8 Investigational Neuroprotectants and Pharmacological Intervention 382
21.9 Transcranial LLLT for Stroke 382
 21.9.1 Transcranial LLLT in Animal Models for Stroke 382
21.10 Traumatic Brain Injury 385
 21.10.1 Transcranial LLLT Studies for TBI in Animal Models 386
21.10.2 Effect of Different Laser Wavelengths in tLLLT in Closed-Head TBI Model in Mice 388
21.10.3 Effect of Pulsing in LLLT for CCI-TBI in Mice 389
21.10.4 Effects of tLLLT-Repetition Regimen in CCI-TBI in Mice 391
21.10.5 Transcranial tLLLT in Mice with TBI Stimulates the Brain to Repair Itself 393
21.11 Conclusion 395

22 Phototherapy in Peripheral Nerve Repair and Muscle Preservation 403
Shimon Rochkind
22.1 Incomplete Peripheral Nerve Injury 405
22.2 Complete Peripheral Nerve Injury 407
22.3 Nerve Cells 409
22.4 Clinical Trial 410
22.5 Denervated Muscle 410
22.6 Conclusion 412

23 Low-Level Laser Therapy for Spinal Cord Repair 415
Takahiro Ando and Michael R. Hamblin
23.1 Introduction 415
23.2 Therapeutic Strategies for Spinal Injury 416
23.3 LLLT for Spinal Cord Repair 418
23.3.1 Laser Irradiation in Spinal Cord for Therapy of Injured Peripheral Nerves 418
23.3.1.1 Animal studies 418
23.3.1.2 Clinical studies 420
23.3.2 LLLT for Nerve Transplantation of Spinal Injured Animals 421
23.3.3 Effects of NIR Laser Irradiation Alone for SCI Model 423
23.3.3.1 Experimental SCI model 423
23.3.3.2 Transmittance of transcutaneous NIR laser to spinal cord 423
23.3.3.3 LLLT for injured spinal cord in rats 425
23.3.4 Clinical Study: Intravascular LLLT for Chronic SCI Patients 427
23.4 Mechanism Studies of LLLT for SCI 428
23.5 LLLT for Other Spinal Cord Diseases 429
23.6 Conclusion 429

24 Low-Level Laser (Light) Therapy for the Treatment of Visual System Injury and Disease 435
Janis T. Eells, Sandeep Gopalakrishnan, Michele M. Salzman, Krisztina Valter, Jan Provis, Ricardo Natoli, John Mitrofanis, Jonathan Stone, and Melinda Fitzgerald
24.1 Introduction 435
24.2 LLLT in Animal Models of Retinal and Optic Nerve Injury
 24.2.1 Methanol Intoxication 437
 24.2.2 Light-Induced Retinal Damage 438
 24.2.3 Optic Nerve Injury 440
24.3 LLLT in Animal Models of Retinal and Optic Nerve Disease
 24.3.1 Retinopathy of Prematurity 441
 24.3.2 Diabetic Retinopathy 442
 24.3.3 Retinitis Pigmentosa 443
 24.3.4 Aging and Age-Related Macular Degeneration 444
 24.3.5 Parkinson’s Disease 444
24.4 LLLT in Clinical Investigations of Retinal Disease 445
 24.4.1 Age-Related Macular Degeneration 445
 24.4.2 Diabetic Retinopathy 446
24.5 Conclusion 447

25 Protection from Cardiac Ischemia and Reperfusion Injury 453
Agnes Keszler, Svjetlana Dosenovic, and Martin Bienengraeber
25.1 Introduction 453
25.2 Repair of the Infarcted Heart 454
 25.2.1 Underlying Mechanisms of Light-Induced Repair after Myocardial Infarction 455
 25.2.2 Induction of Stem Cells by Phototherapy 457
25.3 Protection Against Acute Ischemia and Reperfusion Injury
25.3.1 Alternative Sources of Nitric Oxide in Light-Induced Cardioprotection 458
25.3.2 Cytochrome c Oxidase and NO 460
25.4 Discussion of Potential Clinical Applications 462
25.5 Conclusion 464

26 Low-Level Laser and Experimental Aortic Aneurysm: Mechanisms and Therapeutic Implications 471
Lilach Gavish and S. David Gertz
26.1 Introduction 471
26.1.1 Aortic Elasticity and Resilience 472
26.1.2 Smooth Muscle Cells 473
26.1.3 Activated Monocytes/Macrophages 473
26.2 Effect of LLL on Experimental AAA 474
26.2.1 LLL Promotes SMC Proliferation and Augments Collagen Synthesis in Vitro 474
26.2.1.1 Proliferation 474
26.2.1.2 Collagens I and III trihelix formation 475
26.2.1.3 Collagen secretion 476
26.2.1.4 MMP activity 476
26.2.2 LLL Attenuates LPS-Induced Secretion of Inflammatory Factors 476
26.2.2.1 Chemokine/cytokine expression 477
26.2.3 LLLL Prevents de Novo Formation and Halts Further Progression of Pre-Induced AAA in Vivo 477
26.2.3.1 De novo aneurysm formation 478
26.2.3.2 Progression of pre-existing aneurysm 479
26.2.4 LLL Increases SMC Size and Collagen Deposition 479
26.2.4.1 Medial SMC size 479
26.2.4.2 Collagen reinforcement 479
26.2.5 LLL Attenuates the Number of Macrophages in Transmedial Aortic Defects 481
26.2.5.1 Macrophages in area of transmedial defect 481

26.3 Therapeutic Approaches 483
 26.3.1 Current Treatments and Early Detection 483
 26.3.2 How Can LLL be used for Treatment of AAA? 483
 26.3.2.1 Noninvasive LLL 484
 26.3.2.2 Minimally invasive intravascular LLL 484
 26.3.2.3 Minimally invasive laparoscopic LLL 484

26.4 Conclusion 484

27 Low-Level Laser Therapy: A Treatment Modality for Multiple Sclerosis Targeting Autoimmunity and Oxidative Stress 491
 Zenas George, Miguel A. Tolentino, and Jeri-Anne Lyons
 27.1 Introduction 492
 27.1.1 Multiple Sclerosis 492
 27.1.2 Pathogenesis of Multiple Sclerosis 493
 27.1.3 Animal model for Multiple Sclerosis 494
 27.2 LLLT as an Emerging Treatment Modality for Multiple Sclerosis 494
 27.2.1 Efficacy of Phototherapy in Animal Model for Multiple Sclerosis 494
 27.2.2 LLLT for Treatment of MS 496
 27.3 Future Directions 497
 27.4 Conclusion 498

28 Low-Level Laser Therapy as an Alternative Treatment for Snake Envenomation 503
 Camila Squarzoni Dale and Stella Regina Zamuner
 28.1 Introduction 503
 28.2 Snake Envenomation of the *Brothrops* Genus 504
 28.2.1 Local Manifestations 506
 28.2.2 Systemic Manifestations 506
 28.2.3 Anti-Venom Treatment 507
28.3 Low-Level Laser Therapy for Treatment of Local Manifestations of Bothrops Envenomation

28.3.1 Myonecrosis and LLLT 508
28.3.2 Local Inflammation and LLLT 511
28.3.3 Hyperalgesia and LLLT 512

28.4 Conclusion 513

29 Veterinary Low-Level Laser (Light) Therapy Applications for Companion Animals 519

Richard L. Godine

29.1 Introduction: Finding Common Ground 519
29.2 Treatment Parameters 521
29.3 Musculoskeletal Conditions 522
29.3.1 Degenerative Joint Disease and Osteoarthritis 522
29.3.1.1 DJD of the hip 522
29.3.1.2 DJD of stifles 526
29.3.1.3 DJD of elbow 526
29.3.2 Acute Musculoskeletal Injuries 527
29.3.2.1 Iliopsoas strain 527
29.3.2.2 Biceps and supraspinatus tendon strain of the shoulder 529
29.3.2.3 Fractures 529
29.4 Dermatological Conditions 530
29.4.1 Surgical Wounds and Lacerations 530
29.4.2 Infected Wounds 530
29.4.3 Hot Spots and Otitis Externa 531
29.4.4 Snake and Insect Bites 531
29.5 Neurological Conditions 533
29.5.1 Intervertebral Disk Disease 533
29.5.2 Dementia 534
29.6 Renal Conditions 536
29.6.1 Feline Lower Urinary Tract Disease 536
29.6.2 Chronic Renal Failure 537
29.7 Other Internal Organs 537
29.8 Other Miscellaneous Applications for Light Therapy 538
29.8.1 Dental Applications 538
29.8.2 Ophthalmic Disorders 538
29.8.3 Neoplasia 538
29.9 Conclusion 539

30 Emergence of Low-Level Laser (Light) Therapy in Clinical Veterinary Practice 543
Ronald E. Hirschberg
30.1 Introduction: Factors Influencing Adaptation of LLLT to Clinical Practice 544
30.1.1 Clinical Applications 545
 30.1.1.1 Soft tissue, wound healing, and ophthalmological applications 545
 30.1.1.2 Spinal cord disease 546
 30.1.1.3 Orthopedic conditions 548
 30.1.1.4 Dermatology and light therapy 549
 30.1.1.5 LLLT and metabolic disease 550
30.1.2 Treatment Parameters 551
30.1.3 Therapeutic Outline 553
30.1.4 Safety and Contraindications 554
30.1.5 Clinical and Practical Benefits of LLLT 555
30.1.6 Future of Photobiomodulation in Veterinary Practice 557

31 Photomedicine for Exotic Animals: A Case-Based Discussion 559
Narda G. Robinson
31.1 Introduction 559
31.2 Hurdles 559
31.3 Clinical Applications 560
 31.3.1 Traumatic Brain Injury 560
 31.3.2 Spinal Cord Injury 562
 31.3.3 Neuropathic and Orthopedic Pain 564
 31.3.4 Wound Healing and Infection 565
 31.3.5 Laser Acupuncture 569
31.4 Conclusion 574

32 Recalcitrant Wound: Using Low-Level Laser (Light) Therapy to Manage Non-Healing Wounds and Ulcers 581
Raymond J. Lanzafame and Istvan Stadler
32.1 Introduction: An Overview of Normal Wound Healing 582
32.2 Photobiomodulation and Wound Healing 583
 32.2.1 Photobiomodulation and Its Mechanisms 583
 32.2.2 Applying Phototherapy to Wounds: Wavelengths and Energy Density 584
 32.2.3 Applying Phototherapy to Wounds: Irradiance, Exposure Time, and Dose and Treatment Frequency 585
 32.2.4 Applying Phototherapy to Wounds: Skin Pigmentation and Other Considerations 586
32.3 Bacterial Contamination and Wound Infection: Antimicrobial Effects of LLLT 586
32.4 General Considerations for Wound Management 587
 32.4.1 Initial Evaluation and Management 587
 32.4.2 Evaluation of the Wound or Wounds 588
 32.4.3 Wound Evaluation: Initial Documentation and Management 588
 32.4.4 Wound Evaluation: Photodocumentation 589
32.5 Clinical Applications and Considerations 591
 32.5.1 Patient Selection 592
 32.5.2 Device Selection and Use 592
32.6 Summary 593

33 Clinical Applications with Low-Level Laser Therapy in Arthritis 597
Jan M. Bjordal
33.1 Introduction 597
33.2 Pathoanatomy and Inflammation in Early-Stage OA and Avenues for LLLT Irradiation 600
 33.2.1 Synovia 600
 33.2.2 Bone 601
 33.2.3 Cartilage and Menisci 601
 33.2.4 Peripheral Nerves and Pain Receptors 601
33.3 Complex Relationship between Inflammation, Tissue Interaction, and Structural Chondral Matrix Degeneration in OA 602
33.4 Why LLLT Works in OA? 602
33.5 Recommended Doses of LLLT in Arthritis 603
34 Use of Low-Level Laser Therapy and Light-Emitting Diode Therapy to Improve Muscle Performance and Prevent Damage: From Animal Models to Clinical Trials

Cleber Ferraresi, Nivaldo Panizotto, Vanderlei Bagnato, and Michael R. Hamblin

34.1 Introduction

34.2 Experimental Models Using LLLT to Enhance Muscle Performance and Prevent Damage

34.3 Experimental Models Using LEDT to Enhance Muscle Performance and Damage Prevention

34.4 Clinical Trials Using LLLT to Increase Muscle Performance and Prevent Damage: Acute Responses

34.5 Clinical Trials Using LLLT to Enhance Muscle Performance and Damage Prevention: Chronic Responses

34.6 Clinical Trials Using LEDT to Improve Muscle Performance and Prevent Damage: Acute Responses

34.7 Clinical Trials Using LEDT to Improve Muscle Performance and Prevent Damage: Chronic Responses

34.8 Conclusion

35 Low-Level Laser Therapy of Pain: Clinical Applications

Roberta T. Chow

35.1 Background

35.2 What is Pain?

35.3 Types of Pain and Mechanisms

35.4 Mechanisms Underlying Pain Relief

35.4.1 Neural Blockade

35.4.2 Reduce Inflammation

35.4.3 Reduce Edema

35.4.4 Reduce Muscle Spasm

35.4.5 Tissue Repair

35.4.6 Release of Neurotransmitters

35.5 Conditions in Which LLLT is Used and Evidence

35.5.1 Reviews of LLLT and Pain
35.5.2 Evidence for Specific Conditions

35.5.2.1 Arthridities

35.5.2.2 Neck pain

35.5.2.3 Back pain

35.5.2.4 Shoulder pain

35.5.2.5 Tendinopathy and enthesitis

35.5.2.6 Lateral epicondylitis

35.5.2.7 Trigger point and myofascial pain

35.5.2.8 Neuropathic pain

35.5.2.9 Lymphedema

35.5.2.10 Post-operative pain

35.6 Pretreatment Pain Relief

35.6.1 Unique Effects of LLLT in Pain

35.7 Practical Considerations

35.7.1 Treating Knee Osteoarthritis as an Example

35.8 Factors Influencing Outcomes

35.8.1 Laser Factors

35.8.1.1 Wavelength

35.8.1.2 What is the correct dose?

35.8.1.3 Application technique

35.8.2 Treatment Protocol

35.8.2.1 How long should a course of treatment be?

35.8.3 Patient Factors

35.8.4 Disease Factors

35.9 What Are the Goals of Treatment with LLLT?

35.9.1 Monotherapy versus Adjunctive Treatment

35.9.2 Why Some Patients Do Not Respond to LLLT?

35.10 Practice Points

35.11 “Tip of the Iceberg” Principle

35.12 Prognostic Factors

35.13 Side Effects of Treatment

35.14 Conclusion
36 Low-Level Laser Therapy and Its Application in Tinnitus

Alessandra Nara de Souza Rastelli, Emanuelle Teixeira Carrera, Gustavo Nicolodelli, and Michael R. Hamblin

36.1 Introduction 686
36.2 Symptoms of Tinnitus Ringing in Ears 688
36.3 Types of Tinnitus 688
 36.3.1 Subjective Tinnitus 688
 36.3.2 Objective Tinnitus 689
 36.3.3 Function and Dysfunction of Inner Ear 690
36.4 Causes of Tinnitus 691
36.5 Diagnosis of Tinnitus 692
36.6 Mechanisms of LLLT on Tinnitus 693
36.7 LLLT for Tinnitus 695
36.8 Conclusion 703

37 Laser Therapy for the Treatment of Radiculopathy

Jerome M. True and Luis C. Vera

37.1 Introduction 711
37.2 Pathomechanisms of Radiculopathy 713
37.3 Complex Spinal Pain Patient with Radiculopathy 715
37.4 Common Levels of Radiculopathy 716
 37.4.1 Lumbar Radiculopathy 716
 37.4.2 Cervical Radiculopathy 716
 37.4.3 Thoracic Radiculopathy 718
37.5 Proposed Mechanisms of Laser Therapy on Radiculopathy 721
37.6 Clinically Useful Treatment Protocols 723
 37.6.1 Pulsed or Continuous Laser Therapy 723
 37.6.2 Contact or Coupled Technique 725
 37.6.3 Treatment of Associated Guarding Spasm 725
 37.6.4 Treatment of Segmentally Innervated Musculature 726
 37.6.5 Treatment of L5 and S1 Radiculopathies 728
 37.6.6 Treatment of C6 and C7 Radiculopathies 730
 37.6.7 Treatment of Thoracic Radiculopathies 732
38 Difficult Path to Treating Acute Ischemic Stroke Patients with Transcranial Near-Infrared Laser Therapy 741

Paul A. Lapchak, Pramod Butte, and Padmesh S. Rajput

38.1 Introduction 742
38.2 NILT Penetration Profiles in Animals and Humans 743
38.3 Translational NILT Studies in Stroke Models 746
 38.3.1 Is There a Correlation between NILT Power Density and Improved Behavioral Function in Animal Models? 746
38.4 NILT Safety Trials 749
38.5 NILT Stroke Clinical Trial Development 750
 38.5.1 NEST-1 750
 38.5.2 NEST-2 752
 38.5.3 NEST-3 753
38.6 Need to Optimize NILT in a Standardized Translational Model 753
38.7 Conclusion 754

39 Low-Level Laser (Light) Therapy for Rehabilitation in Traumatic Brain Injury and Stroke, including Chronic Aphasia 761

Margaret A. Naeser, Paula I. Martin, Michael D. Ho, Maxine H. Krengel, Yelena Bogdanova, Jeffrey A. Knight, Megan K. Yee, Ross Zafonte, Bang-Bon Koo, John G. Roubl, and Michael R. Hamblin

39.1 Introduction 762
39.2 Mechanisms of LLLT 762
39.3 Traumatic Brain Injury 763
 39.3.1 Introduction to TBI in Humans 763
 39.3.2 Brain Imaging Studies in TBI 765
 39.3.3 Cognitive Dysfunction in TBI 766
 39.3.4 Poor Sleep in TBI 767
 39.3.5 Pharmacologic Treatments for TBI 767
 39.3.6 Cognitive Rehabilitation Therapies for TBI 768
 39.3.7 Transcranial LED Treatments to Improve Cognition and Sleep in Chronic mTBI 769
 39.3.8 Intranasal LED Treatments to Improve Cognition and Sleep in mTBI 771
Contents

39.4 Stroke 773
 39.4.1 Transcranial LLLT to Treat Acute Stroke 773
 39.4.1.1 Transcranial LLLT studies to treat acute stroke: Small-animal studies 773
 39.4.1.2 Transcranial LLLT to treat acute stroke: Human studies 775
 39.4.2 Transcranial LLLT to Treat Chronic Stroke 776
 39.4.2.1 Transcranial LLLT to treat chronic stroke: Human studies 776
 39.4.3 Transcranial LLLT to Improve Language in Chronic Aphasia Due to Stroke 778
 39.4.3.1 Aphasia 778
 39.4.3.2 Importance of specific LED placement areas on the scalp to treat aphasia in chronic stroke 779
 39.4.3.3 Bilateral tLED treatment method 780
 39.4.3.4 Left-hemisphere-only tLED treatment method 781
 39.4.3.5 Transcranial LLLT to treat primary progressive aphasia, neurodegenerative disease 783
 39.4.3.6 Additional tLED treatment studies with chronic aphasia due to stroke 785

39.5 Other Noninvasive Brain Stimulation Therapies to Treat TBI or Stroke 786
 39.5.1 Transcranial Magnetic Brain Stimulation 786
 39.5.2 Transcranial Direct Current Stimulation 788

39.6 Conclusion 791

40 Transcranial Near-Infrared Light for Major Depressive Disorder: Targeting the Brain Metabolism 809
 Paolo Cassano, Abigail R. Archibald, and Dan V. Iosifescu

40.1 Introduction 809

40.2 Transcranial Near-Infrared Light: Biological Properties and Safety 810
Contents

40.3 Depression, Antidepressant Treatment, and Brain Energy Metabolism 812
40.4 Near-Infrared Light: Mood Effects in Healthy Volunteers 813
40.5 Near-Infrared Light: Effect on Mood in TBI and PTSD Patients 814
40.6 Near-Infrared Light For Depression 816
 40.6.1 Near-Infrared Light for Depression and Anxiety: Single Session 816
 40.6.2 Near-Infrared Light for Depression: Multiple Sessions 817
 40.6.3 Near-Infrared Light for Depression: Multiple Sessions and Pulse Light 818
40.7 Conclusion 819

41 Low-Level Laser Therapy: A Corner Stone in the Management of Cancer Therapy–Induced Mucositis 825
Réné-Jean Bensadoun, Idriss Troussier, and Raj G. Nair
41.1 Introduction 825
41.2 What is Mucositis? 826
41.3 Low-Level Laser Therapy 826
41.4 Clinical Trials 827
41.5 Recommendations and Future Directions 829
41.6 Conclusion 829

42 Photobiomodulation in Dentistry: Manipulating Biostimulation and Bioinhibition for Clinical Success 833
Gerry Ross and Alana Ross
42.1 Introduction 834
 42.1.1 Keys to Successful Use of PBM in Dentistry 835
 42.1.2 Determining the Appropriate Dose 835
42.2 Dental Procedures Using Laser Therapy 837
 42.2.1 Surgical Extractions 837
 42.2.2 Alveolar Osteitis (Dry Socket) 839
 42.2.3 Dental Infection 839
 42.2.4 Restorations 841
 42.2.4.1 Cementing crowns 843
 42.2.5 Nausea and Gagging 843
Contents

42.2.6 Dentin Hypersensitivity 844
42.2.7 Soft Tissue Lesions 846
 42.2.7.1 Herpes lesions 847
 42.2.7.2 Aphthous ulcers 848
 42.2.7.3 Appliance irritation mucosal lesions 849
42.2.8 Oral Mucositis 849
42.2.9 Gingivitis 850
42.2.10 Periodontitis 851
42.2.11 Endodontics 852
 42.2.11.1 Pulpotomies 852
42.2.12 Nerve Regeneration 852
42.2.13 Orthodontics 854
42.2.14 Implants 855
42.2.15 Sinusitis 857
42.2.16 Temporomandibular Joint Pain 857
42.3 Conclusion 860

43 Photobiomodulation for the Clinical Treatment of Age-Related Macular Degeneration 867
 Graham Merry and Robert Dotson

44 Laser (Light) Therapy for Postherpetic Neuralgia 891
 Kevin C. Moore and R. Glen Calderhead
 44.1 Overview of Postherpetic Neuralgia 891
 44.1.1 Aetiology 891
 44.1.2 Incidence 892
 44.1.3 Signs and Symptoms 892
 44.1.4 Treatment Options 893
 44.1.5 Prognosis 893
 44.2 Laser (Light) Therapy 893
 44.2.1 History 893
 44.2.2 Clinical Research 895
 44.2.3 Mechanisms of Action of LLLT 897
 44.3 Enter the Light-Emitting Diode 898
 44.3.1 Background 898
 44.3.2 The “NASA LED” 898
 44.3.3 Efficacy of LED Sources 900
44.3.4 Clinical Evidence 900
44.4 Conclusion 902

45 Laser Acupuncture 907
Lucas F. de Freitas and Michael R. Hamblin
45.1 Introduction 908
45.2 Laser Acupuncture in Pain Reduction 911
45.3 Laser Acupuncture in Wound Healing 914
45.4 Laser Acupuncture in Respiratory Diseases 915
45.5 Laser Acupuncture in Heart Rate and Heart Rate Variation 915
45.6 Laser Acupuncture and Brain Activity 917
45.7 Auricular Laser Acupuncture 922
45.8 Other Applications for Laser Acupuncture 923
45.9 Conclusion 927

46 Intravascular Laser Irradiation of Blood 933
Daiane Thais Meneguzzo, Leila Soares Ferreira, Eduardo Machado de Carvalho, and Cássia Fukuda Nakashima
46.1 Introduction 933
46.2 History of ILIB 934
46.3 Antioxidant Action of ILIB 936
46.4 Modified ILIB Techniques 943
 46.4.1 Intranasal Irradiation 944
 46.4.2 Wrist Skin Irradiation 945
46.5 Side Effects and Contraindications of ILIB 946

47 Nonsurgical Laser Therapy for Type 1 and Type 2 Diabetes 953
Leonardo Longo
47.1 Epidemiology 953
47.2 History 955
47.3 Background and Objectives 959
47.4 Study Design 961
47.5 Results and Discussion 967
47.6 Conclusion 972

48 Laser Therapy of Traumatic Central Nervous System Injuries 977
Leonardo Longo and Diego Longo
48.1 State of the Art and Objectives 977
Contents

1. Study Design and Methodology 979
2. Results and Discussion 984
3. Conclusion 986

49 Low-Level Laser (Light) Therapy: Aesthetic Applications for Hair 989
Felipe Scholz Ramos, André Luiz de Oliveira Ramos, and Marcelo Victor Pires de Sousa

1. Physiology of Hair Growth (Phases) 990
2. Types of Hair Loss and Some Treatments 993
 1. Androgenetic Alopecia 993
 2. Alopecia Areata 994
 3. Chemotherapy-Induced Alopecia 995
 4. Telogen Effluvium 995
 5. Scarring Alopecia 996
3. Treatments 996
 1. Finasteride 997
 2. Minoxidil 997
4. In Vivo Studies of LLLT 998
5. LLLT for Hair Growth: Clinical Trials 1000
6. LLLT for Hair Growth and Hair Loss (Proposed Mechanisms) 1003
7. Phototherapy Devices for Hair Aesthetics 1008
8. Future Perspectives 1011
9. Glossary 1011

50 Low-Level Laser (Light) Therapy for Cosmetics and Dermatology 1017
Mossum K. Sawhney and Michael R. Hamblin

1. Introduction 1017
2. LLLT in Dermatology 1018
 1. LLLT for Skin Rejuvenation 1018
 2. LLLT for Acne 1023
 3. LLLT for Photoprotection 1026
 4. LLLT for Herpes Virus 1028
 5. LLLT for Vitiligo 1030
 6. LLLT for Reduction of Pigmented Lesions 1032
 7. LLLT for Hypertrophic Scars and Keloids 1033
53.2.4 Application of LLLT in Pediatric and Adult Neurosurgical Procedures 1084
53.2.5 LLLT in Neurosurgery Procedures 1087
53.3 Final Remarks on Post-Operative Surgeries 1089

54 Bright New World: Future Directions of Low-Level Laser (Light) Therapy 1093

Marcelo Victor Pires de Sousa and Maria Cristina Chavantes
54.1 Introduction 1094
54.2 New Clinical Indications for LLLT 1094
54.2.1 Stem Cells 1095
54.2.2 Transcranial LLLT for Brain Disorders 1096
54.2.3 Ophthalmology 1097
54.2.4 Autoimmune Diseases 1098
54.2.5 Lung Disease and Tracheal Stenosis 1098
54.2.6 Hemodynamic Effect 1099
54.2.7 Performance Enhancement 1099
54.2.8 Optimizing Treatment 1100
54.3 Novel Light Sources for LLLT 1100
54.3.1 Wearable LLLT Devices: Bandages and Clothing 1101
54.3.2 Implantable LEDs for Brain and Spine 1102
54.3.3 Swallowable LED Source Capsule 1102
54.4 A Bright New World with Photobiomodulation 1103

Index 1107
Preface

Low-level laser (light) therapy (LLLT) has in recent years become one of the fastest growing fields of medicine. Originally considered to be firmly and enduringly sequestered in the arena of "alternative and complementary medicine", LLLT has staged something of a breakout. The reasons for this remarkable change in perception by both the medical profession and the general public are interesting to consider.

Firstly we have the substantial advances in knowledge that have been made in understanding the underlying mechanisms of action. No longer do we have to rely on hand-waving and vague comments about the cells "feeding on light" in an analogous manner to photosynthesis in the plant kingdom. Now we understand many of the molecular mechanisms of photon absorption, we know which subcellular organelles respond to light, and appreciate some of the signaling pathways and transcription factors that are activated, and the tissue responses that occur including activation and mobilization of stem cells.

The second big sea change has been the realization that we do not necessarily need lasers to carry out LLLT. In the old days much laser therapy was carried out by "practitioners" and therapists of various types and was considered to be a specialty for which significant training was required. This was reasonable in light of the real concerns for laser eye safety and protecting against other possible hazards. Now, however, the use of light-emitting diode (LED) arrays is rapidly taking off, and these devices are readily available on online shopping websites and are also sold on late-night television. Although some knowledge is still required to understand the best parameters to use for each different indication, and which can be
achieved relatively easily considering the broad dissemination of information over the Internet.

Thirdly we have the growing realization that LLLT has a broad range of systemic and regional effects in addition to the local effects that were initially the main focus of everyone’s attention. Since LED arrays by definition have a broad area illumination spot, significant amounts of tissue are exposed to light, and light is absorbed by blood flowing within the skin and other tissues that are exposed to light. Light can be applied to nerves and lymph nodes to give regional effects, as well as to the actual lesion that is being treated.

Fourthly we have seen an impressive increase in the number of applications of LLLT to the brain. LLLT was originally tested as a treatment for acute ischemic stroke and has been used for the same over the last ten years. However, now its sphere has widened and is being applied to other instances of brain trauma including chronic stroke, acute traumatic brain injury (TBI), and chronic TBI. A number of chronic neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease have shown to be benefited by LLLT. A wide range of psychiatric disorders including depression, anxiety, post-traumatic stress disorder, and autism spectrum disorder have been found to be susceptible to treatment with LLLT.

Fifthly we are beginning to see significant progress in the use of LLLT for enhancement of performance in normal people. The most developed area of this application is the enhancement of muscle performance in athletes and competitors in a wide range of sports. Not only can LLLT increase the amount of work and power that can be produced by muscles, but it can also increase the speed of recovery after exercise and can be a great help in training regimens. A less developed area is that of enhancement of cognitive performance, and improvement in memory and mood using LLLT. We expect that efforts toward realizing these goals will be emerging soon.

Lastly, but worth mentioning, is the use of LLLT for cosmetic and aesthetic improvements. Stimulation of hair regrowth is now well established, and improvement of fine lines and wrinkles in the face is also growing in popularity. The use of LLLT to combat one of the biggest problems in the modern age, obesity and excess
fat deposits is also starting to take off. These applications address many of the issues driving the home-use market for LLLT devices, as consumers are generally prepared to spend their disposable income on aesthetic improvements.

This handbook represents the most comprehensive edited book in the field of LLLT [now called photobiomodulation (PBM) therapy] that has been published to date. With 54 chapters spread over more than 1100 pages it provides broad coverage of all the multitudinous topics that comprise this most fascinating of medical therapies. The reader will find chapters on the basic principles, mechanisms of action, dosimetry, devices, in vitro studies, a large range of animal models, clinical applications in veterinary medicine, and broad coverage of a wide range of human clinical studies and uses. We expect it to become the gold-standard reference book for some considerable time to come.

Michael R. Hamblin
Marcelo Victor Pires de Sousa
Tanupriya Agrawal
Summer 2016