Personalised precision therapy is increasingly being seen as the future of medical care. This requires that drugs or diagnostics tailored to the specific needs of individuals be selectively targeted to the site of disease. To achieve this end, nucleic acid aptamer technology is one of the most promising approaches capable of delivering targeted diagnosis and therapy. Aptamers, often termed “chemical antibodies,” are short, synthetic single-stranded DNA or RNA oligonucleotides that can bind to a molecular target with high specificity and affinity because of their ability to adopt 3D shapes. The application of aptamers continues to grow across various fields and demonstrates its potential for targeted molecular recognition. This book provides an overview of aptamer technology through 13 well-crafted chapters written by international experts in the field. The chapters provide excellent insight into the aptamer history, development, and applications in targeted cancer therapy, neurological diseases, infectious diseases, drug delivery, medical diagnosis, molecular imaging, clinical development, and the scope of aptamer technology.

Rakesh N. Veedu obtained his PhD in synthetic organic chemistry in 2006 from the University of Queensland, Australia, after completing his MSc in clinical microbiology from Griffith University. He then continued his postdoctoral career at the Nucleic Acid Center, University of Southern Denmark, in the field of nucleic acid chemical biology. He returned to the University of Queensland in mid-2010, where he established his independent research group focused on novel functional nucleic acid–based biotechnologies for developing target-specific therapies for various diseases, including neurological diseases, inherited/genetic disorders, and solid cancers. Specifically, his research involves the development, synthesis chemistries, and applications of nucleic acid aptamers, antisense oligonucleotides, siRNA, antiRNA, DNAzymes, etc.

Dr. Veedu is currently a McCusker fellow and a group leader in nucleic acid chemical biology at the Western Australian Neuroscience Research Institute and Centre for Comparative Genomics, Murdoch University, Perth, Western Australia.
Aptamers
Contents

Preface

1 **History of Aptamer Development**
 Nasa Savory, Koichi Abe, Taiki Saito, and Kazunori Ikebukuro
 1.1 Introduction
 1.2 In vitro Selection
 1.2.1 Library for SELEX
 1.2.2 Target Applicability for SELEX
 1.2.3 Expansion of Functional Space in SELEX
 1.3 Aptamer Improvement
 1.3.1 Artificial Nucleotides
 1.3.2 Multimerization Strategies
 1.3.3 Genetic Algorithms for Aptamer Improvement
 1.4 In silico Selection
 1.5 Conclusion

2 **Thioredoxin-Based Peptide Aptamers: Development and Applications**
 David S. Burz, Sergey Reverdatto, and Alexander Shekhtman
 2.1 Introduction
 2.2 Thioredoxin Scaffolds
 2.3 Selection and Characterization of PAs
 2.4 Applications
 2.4.1 Combinatorial Libraries
 2.4.2 Rational Design of PAs
 2.5 Constrained vs. Unconstrained PA Inserts
 2.6 Modifications and Alternatives to the Trx Scaffold
 2.7 Conclusions
3 Aptamer Selection Methodologies

Penmetcha K. R. Kumar

3.1 Introduction 49
3.2 Selection Methods 53
 3.2.1 Affinity Column Selection 53
 3.2.2 Nitrocellulose Filter Selection 55
 3.2.3 Affinity Surfaces and Tag Selection 56
 3.2.4 Electrophoresis Selection 58
 3.2.5 Centrifugation Selection 59
 3.2.6 Surface Plasmon Resonance Selection 60
 3.2.7 Microfluidics Selection 62
 3.2.8 Alternating Two Selection Methods 63

4 Selection and Application of Catalytically Active Oligonucleotides

Rachel Gysbers, Kha Tram, Sepehr Manochehry, Dingran Chang, and Yingfu Li

4.1 Nucleic Acids: Beyond Genetic Storage 75
4.2 Isolating Catalytically Active Oligonucleotides 77
 4.2.1 In vitro Selection Using DNA or RNA 77
 4.2.2 Effects of Library Design during in vitro Selection 78
 4.2.3 Incorporating Chemically Modified Nucleotides into in vitro Selection 79
 4.2.4 In vitro Selection Design for Catalytic Specificity 80
 4.2.5 Negative Selection 81
 4.2.6 Other Considerations for Selection of Catalytically Active Oligonucleotides 81
4.3 Demonstrating the Capabilities of Nucleic Acid Enzymes 82
 4.3.1 DNAzymes for RNA Cleavage 82
 4.3.2 DNAzymes for Phosphorylation 85
 4.3.3 DNAzymes for Self-Adenylation 87
 4.3.4 DNAzymes for Ligation 87
4.4 Nucleic Acid Enzymes for Biosensing Applications 89
4.5 Nucleic Acid Enzymes as Potential Therapeutics 91
 4.5.1 Delivery of Nucleic Acid Enzymes 92
4.5.1.1 Dendrimers 92
4.5.1.2 Vesicles and nanoparticles 93
4.5.2 NAEs in Therapeutic Applications 93
 4.5.2.1 NAEs targeting cancer 94
 4.5.2.2 DNAzymes combating angiogenesis 95
 4.5.2.3 Growth factors as DNAzyme targets 95
4.5.3 NAEs Targeting Pathogenic Bacteria 96
4.5.4 Nucleic Acid Enzymes Targeting Viruses 97
4.6 Nucleic Acid Enzymes in Imaging Applications 97
 4.6.1 NAEs for Imaging Metal Ion Targets 98
 4.6.2 NAEs Used for Imaging Nucleic Acid Targets 99
4.7 Conclusion 99

5 Stem-Cell-Specific Aptamers for Targeted Cancer Therapy 113
 Hadi Al. Shamaileh, Dongxi Xiang, Tao Wang, Wang Yin, Wei Duan, and Sarah Shigdar
5.1 Introduction 114
 5.1.1 Cancer Stem Cells 115
 5.1.2 CSC Markers and Association with Stemness and Survival 117
 5.1.3 Aptamers in Anticancer Therapy 121
5.2 Current Applications of Aptamers in Targeting CSCs 124
 5.2.1 Aptamers Generated by Standard SELEX 126
 5.2.1.1 Epithelial cell adhesion molecule 126
 5.2.1.2 CD44 129
 5.2.2 Aptamers Generated by Cell-SELEX 130
 5.2.3 CD133 131
 5.2.4 Liver Cancer 132
 5.2.5 Colon Cancer 133
 5.2.6 Prostate Cancer 134
 5.2.7 Leukemia 134
 5.2.8 Glioblastoma Multiforme 137
5.3 Conclusion and Final Remarks 138

6 Aptamers as Therapeutic Tools in Neurological Diseases 151
 Lukas Aaldering, Shilpa Krishnan, Sue Fletcher, Stephen D. Wilton, and Rakesh N. Veedu
6.1 Introduction 151
Contents

6.2 Blood–Brain Barrier 152
6.3 Multiple Sclerosis 153
6.4 Brain Tumor 154
6.5 Stroke 155
6.6 Parkinson Disease 156
6.7 Alzheimer Disease 157
6.8 Myasthenia Gravis 158
6.9 Variant Creutzfeldt–Jakob Disease 159
6.10 Pain and Stress-Relevant Aptamers 159
6.11 Stability of Aptamers 160
6.12 Summary 160

7 Aptamers in Bacterial, Viral, and Parasitic Diseases 169
Henning Ulrich, Arquimedes Cheffer, Flávia M. Zimbres, Attila Tárnok, and Carsten Wrenger
7.1 Introduction 170
7.2 Aptamers for Combating Parasitic Infections 172
7.3 Aptamers and Bacterial Infections 176
7.4 Aptamers in Viral Infections 178
7.5 Conclusion 180

8 Aptamers as Tools for Targeted Drug Delivery 187
Anila Mathew and D. Sakthi Kumar
8.1 Introduction 188
8.2 Aptamer Selection 189
8.3 Aptamers as Therapeutics 192
8.4 Aptamer-Conjugated Therapeutic Systems 196
8.4.1 Aptamer–Drug Conjugates 196
8.4.2 Aptamer–Nanoparticle System 198
8.4.2.1 Aptamer–nanoparticle system with metallic nanoparticles 198
8.4.2.2 Aptamer–nanoparticle system with nonmetallic nanoparticles 199
8.5 Aptamer in Small RNA Deliver 202
8.6 Aptamers in Theranostic Applications 207
8.7 Other Therapeutic Applications Using Aptamers 209
8.8 Conclusion 212
9 Aptamer–Liposome Conjugates: Current Art and Future Prospects 223
Oliver Ries and Stefan Vogel
9.1 Introduction 223
9.2 Aptamer–Liposome Conjugation Strategies 224
9.3 Aptamer–Liposome Conjugates 226
 9.3.1 Toward Dye and Drug Delivery 226
 9.3.1.1 NX213 aptamer targeting VEGF 226
 9.3.1.2 The sgc8 aptamer targeting tyrosine kinase 7 227
 9.3.1.3 FKN-S2 aptamer targeting fractalkine 228
 9.3.1.4 ESTA aptamer targeting E-selectin 230
 9.3.1.5 RNA aptamer Apt1 targeting the CD44 receptor protein 231
 9.3.1.6 AraHH001 aptamer targeting the cardiac protein troponin T 232
 9.3.1.7 xPSM-A9 targeting prostate-specific membrane antigen 233
 9.3.1.8 AS1411 aptamer targeting nucleolin 234
 9.3.2 Toward a Colorimetric Diagnostic Tool 239
9.4 Future Prospects 240

10 Aptamers in Medical Diagnosis 253
Veli Cengiz Ozalp, Murat Kavruk, Ozlem Dilek, and Abdullah Tahir Bayrac
10.1 Introduction 254
10.2 Aptamer Selection 256
10.3 Diagnostic Aptasensor Platforms 261
 10.3.1 Optical Aptasensors 261
 10.3.2 Electrochemical Aptasensors 262
 10.3.3 Nanoparticle–Aptamer Conjugates 263
 10.3.4 Bioconjugation Methods 266
10.4 Medical Applications 268
 10.4.1 Pathogen Detection 268
 10.4.2 Cancer Diagnosis 272

11 Molecular Imaging Utilizing Aptamer-Targeted Probes 287
Nicholas Fletcher and Kristofer Thurecht
11.1 Introduction 287
Table of Contents

11.2 Design of Aptamer-Targeted Imaging Probes 289
11.3 Optical Imaging 291
11.4 Ultrasound Imaging 298
11.5 X-Ray CT Imaging 300
11.6 Magnetic Resonance Imaging 301
11.7 Nuclear Tomographic Imaging 305
 11.7.1 SPECT 305
 11.7.2 PET 306
11.8 Multimodal Imaging 308
11.9 Conclusion 310

12 First Therapeutic Aptamer: VEGF-Targeting Macugen 319
Marissa Leonard and Xiaoting Zhang

12.1 Introduction 320
 12.1.1 Neovascular Age-Related Macular Degeneration 320
 12.1.2 Vascular Endothelial Growth Factor and Its Receptors 320
 12.1.3 Targeting VEGF in Age-Related Macular Degeneration 321

12.2 Development of Macugen (Pegaptanib Sodium) 323
 12.2.1 Isolation of RNA Aptamers Targeting VEGF₁₆₅ 323
 12.2.2 Cellular Effects of Macugen 325
 12.2.3 Pharmacokinetics of Macugen 326

12.3 Clinical Trials 326
 12.3.1 Clinical Trials in Patients with Neovascular AMD 326
 12.3.2 Phase III Clinical Trials of Macugen (VISION Trials) 327
 12.3.3 Benefits and Safety of Macugen 328

12.4 Future Perspectives and Conclusion 329

13 Aptamers: Scope, Limitations, and Future Prospects 335
John G. Bruno

13.1 Introduction 335

13.2 Scope of Aptamer Technology 336
 13.2.1 Range of in vitro Diagnostic Applications 336
13.2.2 Aptamer Applications for in vivo Diagnostic Imaging 337
13.2.3 Therapeutic Applications 338
13.2.4 Current Clinical Trials 340
13.3 Physical Limitations of Aptamers 341
 13.3.1 Stability and Pharmacokinetics 341
 13.3.2 Size and Charge 343
 13.3.3 Morphologic Temperature Dependence 345
 13.3.4 Monomer Diversity 346
 13.3.5 Length and Specificity for Complex Antigens 346
 13.3.6 Mass Production by Chemical Synthesis 347
13.4 Future Prospects for Aptamers 347
 13.4.1 Analgesic and Antishock Aptamers 347
 13.4.2 Futuristic Aptamer Medical Applications 349
13.5 Summary 349

Index 363
Preface

Target-specific drug delivery and therapy still remains one of the holy grails of the drug development community. Of the many approaches used to date, antibody-based techniques are the most widely used, and this technology has matured over several decades. In the early 1990s a new class of targeting compounds emerged with very high target specificity and affinity, as an alternative to antibodies for targeted drug delivery and therapy. These compounds, aptamers (often referred to as “chemical antibodies”), are short, single-stranded functional nucleic acids that can fold into complex 3D shapes in solution for high-affinity recognition of defined molecular targets ranging from small molecules to large proteins and even whole cells. Typically, aptamers are developed through an in vitro reiterative combinatorial selection process called systematic evolution of ligands by exponential (SELEX) enrichment starting with a large pool of oligonucleotide sequences.

Since their discovery, nucleic acid aptamers have attracted considerable attention across various fields of medicine as a platform technology for targeted therapeutic development for a broad range of disease conditions as well as for molecular imaging and diagnosis. Aptamers possess certain qualities that potentially give them an edge over antibody-based approaches. In particular, they do not require live animals for production and can be synthesised on a large scale. Moreover, they possess high stability with long shelf lives, they can be chemically modified, and their functions can be neutralized using an antidote sequence. In 2004, the first aptamer drug targeting the vascular endothelial growth factor protein, Mucagen (Pegaptanib), was approved for clinical use by the US Food and Drug Administration (FDA) for the treatment of age-related macular degeneration (AMD). These developments
have been instrumental in reinforcing the potential of aptamers as a clinical tool and have led to a plethora of publications and patents exploring the use of aptamer technology in various fields. The primary purpose of this book is to review the history, development, and applications of aptamers and discuss their potential as a transformational technology for target-specific therapeutics and diagnostics.

This book covers all aspects of aptamers across 13 chapters. Chapters 1–4 provide a general introduction, while Chapters 5–7 describe the development of therapeutic aptamer candidates for cancer, neurological diseases, and infectious and parasitic diseases. Chapters 8 and 9 provide an overview of aptamers as tools for targeted drug delivery and nanotherapy. The application of aptamers as biosensors for medical diagnosis is described in Chapter 10, and Chapter 11 highlights the use of aptamers as a platform technology for target-specific molecular imaging. Finally, Chapters 12 and 13 are devoted to an in-depth analysis of the clinical development of aptamers and their scope, limitations, and future prospects. As the editor of this book, with many years of experience in the aptamer field, I remain convinced that aptamers have tremendous potential as a tool for delivering targeted nanotherapies and in molecular imaging. I feel immensely proud to have had the opportunity to edit this book and wish to thank the book’s many distinguished contributors. I hope that the book will encourage scientists and clinicians from a variety of fields to consider aptamer-based technologies as a tool in their own research.

Rakesh N. Veedu