Deep brain stimulation (DBS) is a widely used therapy for movement disorders such as Parkinson's disease, essential tremor, and dystonia. Its therapeutic success has led to the application of DBS for an increasing spectrum of conditions. However, the fundamental relationships between neural activation, neurochemical transmission, and clinical outcomes during DBS are not well understood.

Drawing on the clinical and research expertise of the Mayo Clinic Neural Engineering Laboratories, this book addresses the history of therapeutic electrical stimulation of the brain, its current application and outcomes, and theories about its underlying mechanisms. It reviews research on measures of local stimulation–evoked neurochemical release, imaging research on stimulation–induced neural circuitry activation, and the state of the art on closed-loop feedback devices for stimulation delivery.
Deep Brain Stimulation
Deep Brain Stimulation
Indications and Applications

edited by
Kendall H. Lee
Penelope S. Duffy
Allan J. Bieber
Contents

Preface xvii

PART I: INTRODUCTION TO DEEP BRAIN STIMULATION

1. Overview of the History and Application of Deep Brain Stimulation 3
 Kendall H. Lee, Penelope S. Duffy, and Charles D. Blaha
 Introduction 3
 A Brief History of Therapeutic Brain Stimulation 5
 Deep Brain Stimulation for Movement Disorders 5
 The Emergence of DBS for Psychiatric Disorders 8
 The Mathematics of Stereotactic Neurosurgery 11
 The Development of Stereotactic Coordinate Systems 11
 The Evolution of Stereotactic Instrumentation 12
 DBS Neurosurgical Procedures Today 16
 Ethical Considerations 16
 Selection criteria 16
 The importance of a team approach 17
 Surgical Procedure 17
 Conclusion 19

2. Biophysical Fundamentals of Neural Excitation 25
 Susanne Loffler and J. Luis Luján
 Introduction 25
 Extracellular Stimulation of Neural Tissue 26
 Electric Fields in Volume Conductors 26
 Neural Excitability 29
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength-Duration Curve</td>
<td>30</td>
</tr>
<tr>
<td>Axon Properties</td>
<td>32</td>
</tr>
<tr>
<td>Stimulation Paradigms and Their Effects on Neural Activation</td>
<td>32</td>
</tr>
<tr>
<td>Galvanostatic and Potentiostatic Stimulation</td>
<td>33</td>
</tr>
<tr>
<td>Monopolar and Bipolar Stimulation</td>
<td>33</td>
</tr>
<tr>
<td>Cathodic versus Anodic Stimulation: Anodal Surround Block and Stimulation Efficiency</td>
<td>34</td>
</tr>
<tr>
<td>Unidirectional Propagation of Action Potentials</td>
<td>35</td>
</tr>
<tr>
<td>Anodic Break</td>
<td>36</td>
</tr>
<tr>
<td>Stimulus Waveform</td>
<td>36</td>
</tr>
<tr>
<td>Electrode/Electrolyte Tissue Interface</td>
<td>37</td>
</tr>
<tr>
<td>Electrode/Tissue Impedance</td>
<td>37</td>
</tr>
<tr>
<td>Charge Transfer</td>
<td>38</td>
</tr>
<tr>
<td>Capacitive Reactions</td>
<td>39</td>
</tr>
<tr>
<td>Faradaic Reactions</td>
<td>39</td>
</tr>
<tr>
<td>Tissue Damage</td>
<td>40</td>
</tr>
<tr>
<td>Charge Density and Charge Per Phase</td>
<td>40</td>
</tr>
<tr>
<td>Safety Considerations in Design of Stimulating Electrodes</td>
<td>42</td>
</tr>
<tr>
<td>Summary</td>
<td>43</td>
</tr>
</tbody>
</table>

3. Motor Circuit Activity in Parkinson’s Disease

Allan J. Bieber

Introduction | 51 |
The Cortico-Striatal-Pallido-Thalamocortical Motor Loop | 52 |
Motor Circuit Activity in Parkinson’s Disease | 54 |
Support for the Model | 55 |
Deep Brain Stimulation | 56 |
STN and GPi as Targets for Deep Brain Stimulation | 56 |
to Treat Movement Disorders | 56 |
Functional Imaging Following DBS | 58 |
DBS for Other Neurologic and Psychiatric Conditions | 60 |
Summary | 61 |
4. Neuroimaging in Deep Brain Stimulation 67
 Hoon-Ki Min, Erika Ross, and Megan Settell
 Introduction 67
 Neuroimaging Techniques 68
 Principles of MRI 68
 Magnetic resonance imaging 68
 Functional magnetic resonance imaging 70
 Basic Principles of Positron Emission Tomography 71
 Related Forms of Neuroimaging 71
 Neuroimaging in Clinical DBS Targeting 72
 Functional Imaging as a Tool for Understanding DBS Mechanisms 74
 Summary 78

5. Ethical Considerations in the Use of Deep Brain Stimulation 85
 Alexander Fiksdal, Osama A. Abulseoud, and Richard R. Sharp
 Introduction 85
 Ethical Considerations in Deep Brain Stimulation 86
 Patient Selection 87
 Patient Autonomy and Informed Consent 89
 Postsurgical Follow-Up 90
 The Issue of DBS-Related Cognitive Alterations 91
 Managing Ethical Challenges in Investigational Applications of DBS 92
 Conclusion 94

PART II: CLINICAL APPLICATIONS

6. Deep Brain Stimulation for Parkinson’s Disease 101
 Bryan T. Klassen
 Introduction: Clinical Features and Pathophysiology 101
 Treatment With Deep Brain Stimulation 103
 Historical Background 103
 Indications 103
Contents

Symptoms Poorly Addressed with DBS \hspace{2cm} 104
The “Ideal Candidate” \hspace{2cm} 104

DBS Targets and Outcomes

Deuschl et al. (2006) Trial \hspace{2cm} 105
PD-SURG Trial \hspace{2cm} 106
COMPARE Trial \hspace{2cm} 108
VA Cooperative Studies Program Trial \hspace{2cm} 108
Saint Jude Medical DBS Study Group Trial \hspace{2cm} 111
EARLYSTIM Trial \hspace{2cm} 111
DBS in Early Stage PD \hspace{2cm} 112

Possible Mechanisms of Action of DBS for PD \hspace{2cm} 113
Summary \hspace{2cm} 113

7. Deep Brain Stimulation for Tremor

Andrea C. Adams

Introduction \hspace{2cm} 119

Classification of Tremor

- Rest Tremor \hspace{2cm} 120
- Action Tremor \hspace{2cm} 120
- Postural Tremor \hspace{2cm} 120
- Kinetic Tremor \hspace{2cm} 120

Tremor Pathophysiology, History, and Background

- Rest Tremor \hspace{2cm} 121
- Action Tremor \hspace{2cm} 122
- Essential Tremor \hspace{2cm} 122
- Essential Tremor and PD \hspace{2cm} 123
- Etiology of ET \hspace{2cm} 124
- Pathophysiology of ET \hspace{2cm} 124
- Kinetic Tremor \hspace{2cm} 125
- Neuropathic Tremor \hspace{2cm} 125
- Psychogenic Tremor \hspace{2cm} 125

DBS Targets and Surgical Procedure

- DBS Targets \hspace{2cm} 126
- Patient Selection \hspace{2cm} 129
- Surgery \hspace{2cm} 130

Neurophysiology, Mechanism \hspace{2cm} 131
Outcomes, Important Trials 132
Complications 133
Conclusion 134

8. Deep Brain Stimulation for Dystonia 139

Nicholas D. Child and Bryan T. Klassen
Introduction 139
Background and Pathophysiology 141

Disease pathophysiology 144
DBS Target and Surgical Procedure 146
Possible Mechanism of Action 147
DBS Outcomes 147

Primary Dystonia 147
Segmental Dystonia 149
Secondary Dystonia 150
Complications 151
Summary 152

Prakriti Gaba and Charles D. Blaha
Introduction 163

Obsessions 164
Compulsions 164
Neuropathology 165
Treatment 167
Deep Brain Stimulation Targets 168

Anterior Limb of the Internal Capsule and the Ventral Capsule/Ventral Striatum 168
Nucleus Accumbens 170
Subthalamic Nucleus 170
Inferior Thalamic Peduncle 171
Globus Pallidus Interna 172
Therapeutic Outcomes 172
Complications 174
Summary 174
10. Deep Brain Stimulation for Tourette’s Syndrome 181

Hoon-Ki Min, Megan Settell, and Paola Testini

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>181</td>
</tr>
<tr>
<td>Symptom Characteristics</td>
<td>182</td>
</tr>
<tr>
<td>Available Therapies</td>
<td>182</td>
</tr>
<tr>
<td>Deep Brain Stimulation for Tourette’s Syndrome</td>
<td>183</td>
</tr>
<tr>
<td>DBS Targets</td>
<td>184</td>
</tr>
<tr>
<td>Centromedian-Parafascicular Complex</td>
<td>184</td>
</tr>
<tr>
<td>Globus Pallidus</td>
<td>185</td>
</tr>
<tr>
<td>Connections and Possible Mechanism of</td>
<td></td>
</tr>
<tr>
<td>Centromedian-Parafascicular DBS</td>
<td>186</td>
</tr>
<tr>
<td>Summary</td>
<td>188</td>
</tr>
</tbody>
</table>

11. Deep Brain Stimulation for Treatment-Resistant Depression 197

Yesul Kim, Katheryn M. Wininger, and Susannah J. Tye

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>DBS Targets and Outcomes</td>
<td>198</td>
</tr>
<tr>
<td>Subcallosal Cingulate Gyrus</td>
<td>198</td>
</tr>
<tr>
<td>Ventral Capsule/Ventral Striatum</td>
<td>200</td>
</tr>
<tr>
<td>Nucleus Accumbens</td>
<td>201</td>
</tr>
<tr>
<td>Inferior Thalamic Peduncle</td>
<td>202</td>
</tr>
<tr>
<td>Lateral Habenula</td>
<td>203</td>
</tr>
<tr>
<td>Medial Forebrain Bundle</td>
<td>204</td>
</tr>
<tr>
<td>Possible Therapeutic Mechanisms of DBS for Depression</td>
<td>205</td>
</tr>
<tr>
<td>Cytokines</td>
<td>206</td>
</tr>
<tr>
<td>Growth Factors and Synaptic Plasticity</td>
<td>207</td>
</tr>
<tr>
<td>Summary and Future Directions</td>
<td>208</td>
</tr>
</tbody>
</table>

12. Deep Brain Stimulation for Chronic Pain 215

Grant W. Mallory and Prakriti Gaba

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction: Chronic Pain and Its Classification</td>
<td>215</td>
</tr>
<tr>
<td>Pathophysiology</td>
<td>216</td>
</tr>
<tr>
<td>Brain Stimulation for Pain</td>
<td>217</td>
</tr>
<tr>
<td>Patient Selection and Evaluation</td>
<td>217</td>
</tr>
</tbody>
</table>
Contents

Target Selection 219
Surgical Procedure 219
Test Stimulation 221
Possible Mechanisms of Pain Relief with DBS 221
Long-Term Efficacy of DBS for Pain 223
Summary and Future Directions 225

13. Deep Brain Stimulation for Medically Refractory Epilepsy 231

William S. J. Gibson and Penelope S. Duffy

Introduction 231
Background and Pathophysiology 232
Deep Brain Stimulation of the Anterior Thalamic Nucleus 235
 Connectivity and Rationale 235
 Clinical Evidence: The SANTE Trial 237
 ATN DBS: Theories of Mechanism 239
Centromedian Nucleus and Other DBS Targets 240
Responsive Neurostimulation 242
 Rationale 242
 Clinical Evidence: Responsive Neurostimulation 244
Future Directions 245
Summary 247

14. Deep Brain Stimulation for Memory Dysfunction 257

Erika K. Ross, Kevin F. Bieniek, and Hoon-Ki Min

Introduction 257
 Neuroanatomy: The Papez Circuit 258
 Pathophysiology 259
Clinical DBS Targets 262
 Fornix 262
 Nucleus Basalis of Meynert 264
 Entorhinal Cortex 265
Possible Mechanisms of Action 265
Limitations of DBS for Memory Enhancement 267
Summary 267
15. Deep Brain Stimulation for Cluster Headache 275

Cong Zhi Zhao

Introduction 275
Overview of Cluster Headache 276
Deep Brain Stimulation for Chronic Cluster Headache 277
 Patient Selection for DBS 277
 Surgical Technique for DBS 278
 Clinical Outcomes 279
 Complications 280
Conclusion 280

16. Functional Electrical Stimulation for the Treatment of Spinal Cord Injury 283

Peter J. Grahn, Aldo A. Mendez Ruiz, Jan T. Hachmann, and J. Luis Luján

Introduction 283
Functional Electrical Stimulation 284
 Transcutaneous Electrical Stimulation 288
 Implantable Peripheral Electrical Stimulation 289
 Epidural Electrical Stimulation 290
 Intraspinal Microstimulation 291
Neuroprosthetic FES Systems 291
 Lower Extremity Systems 292
 Upper Extremity Systems 293
 Urologic Systems 293
 Respiratory Systems 295
Limitations of Existing Functional Electrical Stimulation Systems 295
Future Directions 296
Conclusions 297

PART III: RESEARCH ON MECHANISMS OF DBS AND NEUROMODULATION

17. Theories of Deep Brain Stimulation Mechanisms 313

Charles D. Blaha

Introduction 313
Hypotheses of DBS Mechanisms
Depolarization Block
Synaptic Depression
Synaptic Modulation
Network Jamming or Modulation
Summary

18. The Role of Astrocytes in Deep Brain Stimulation
Su-Youne Chang and Kendall H. Lee
Introduction
Local Effects of High-Frequency Stimulation on Glia
Astrocytic \(\text{Ca}^{2+} \) Signaling
DBS-Evoked Astrocytic Glutamate Release
High-Frequency Stimulation and Astrocytic ATP Release
DBS-Evoked Astrocytic Adenosine
Adenosine Controls Network Activity
Distal Effects of High-Frequency Stimulation on Glia
DBS-Astrocyte Mechanisms and Effects: A Hypothesis
Conclusion

19. Electrochemical Measurement of Neurochemical Concentrations
Kevin E. Bennet, Charles D. Blaha, and Kendall H. Lee
Introduction
Electrochemistry
Principles of CPA and FSCV
Wireless Instantaneous Neurotransmitter Concentration System
Untethered Neurostimulation System: Mayo Investigational Neurostimulation Control System
Conclusion

20. Electrodes for Neural Stimulation and Monitoring
Jonathan R. Tomshine and Kevin E. Bennet
Introduction
Electrode Design Considerations 374
 Electronic Implications of Design 374
 Biological Considerations: Acute and Chronic 376
 Surface Chemistry and Materials 377
 Wiring and Connectors 378
Neural Electrode Examples 379
 Medtronic 3387 and 3389 Deep Brain Stimulation Electrodes 379
 Electrophysiology Targeting Electrode 381
 Utah Multi-Electrode Array 382
 Carbon Fiber Fast-Scan Cyclic Voltammetry Electrode 382
Summary 385

James K. Trevathan and J. Luis Lujan

Introduction 389

Neurochemical Basis of DBS 390

DBS Control Paradigms 391

Real-Time Monitoring of Neural Activity 393

Electrophysiological Monitoring Techniques 393
 Single and multi-unit recordings 393
 Local field potentials 394
 Global field potentials 394

Neurochemical Monitoring 395
 Microdialysis 395
 Amperometry 395
 Fast scan cyclic voltammetry 396

Functional Imaging Techniques 398
 Positron emission tomography and single-photon emission computed tomography 398
 Functional magnetic resonance imaging 398
Characterization and Modeling of Stimulation-Evoked Neural Activity

Monitoring of Stimulation-Evoked Neurochemical Species

Computational Modeling of Neurochemical Responses

Stimulation Prediction

Additional Considerations

Summary

22. Molecular and Cellular Neuromodulation for Central Nervous System Injury and Regeneration

Lucas P. Carlstrom

Introduction

Introduction to Neural Regenerative Interventions

Historical Neural Regeneration Perspective

Neural Protection and Axon Outgrowth Stimulation

Growth Factors

Anti-Neuronal Apoptosis

Axon Outgrowth Dynamics

 Myelin-based inhibitory factors

 Second messenger pathways

 Intrinsic growth capacity

RNA Interference and Gene Therapy

Lipid and Membrane Integrity

 Gangliosides

 Polymers

 Glucocorticoids

 Non-glucocorticoids

Opioid Antagonism

Excitotoxicity Prevention

 Cation homeostasis

 Glutamate regulation

Regulation of Scar Formation
Contents

Cellular Transplantation 434
Alternative Interventions 435
Limits of the Model System for Studying Neuromodulation 436
Conclusion 436

Index 455
Preface

The success of deep brain stimulation (DBS) as a restorative neurosurgical treatment for certain intractable, neurologically based movement disorders has led to its consideration for a rapidly expanding list of neurologic and psychiatric conditions. Many of these newer applications are at the investigational stage but hold promise as an efficacious means of managing a wide variety of treatment-resistant conditions. These advances have led to increased and expanded efforts to understand the molecular, neural network, and behavioral effects of DBS. Clinical and preclinical DBS research is focused on improving patient care by deepening our understanding of pathologic and normal brain function. It encompasses not only investigations of the effects of DBS on neural activity, patient behavior, and outcomes, but also methods of improving electrode implantation and surgical targeting, techniques to trace the neurochemical and neural network effects of stimulation, engineering improved electrodes and new stimulation devices, such as closed-loop systems that use physiologic feedback to adjust stimulation delivery, and the design and implementation of carefully controlled clinical trials. Such wide-ranging yet integrated research and development efforts require input from the medical disciplines of neurology, neurosurgery, and psychiatry, but also from a variety of scientific disciplines such as engineering, computer science, applied mathematics, imaging science, neurochemistry, neurobiology, neurophysiology and experimental and behavioral psychology.

The need for an interdisciplinary approach to DBS research thus draws on the expertise of those who may be unfamiliar with the clinical application of DBS or with the science behind it or both. This book is intended as a handbook or introduction to the field for professionals and students who are new to DBS or to particular aspects of it. It grew out of work conducted at the Mayo Clinic Neural Engineering Laboratory, which is investigating DBS mechanisms and ways to improve its clinical application and outcomes. For students in graduate programs or medical school, we hope this
book serves not only as an overview of the field but as a source of inspiration to contribute to it. We hope that established clinicians and seasoned scientists from related and disparate fields, whose expertise is needed in basic or translational DBS research, will find it a useful resource.

We have divided the book into three major sections. The **Introduction** serves as an overview of the fundamentals of DBS. **Chapter 1** covers the somewhat tumultuous history of early uses of DBS in psychiatry to its present day applications to both neurologic and psychiatric disorders and provides the basic mathematics of stereotactic surgery, without which DBS would not be possible. It also introduces the reader to the standard DBS surgical procedure and discusses ethical issues that should be taken into account in clinical DBS practice.

To appreciate the therapeutic effects of clinical DBS, it is necessary to understand something about the electrophysiological basis of electrical stimulation and its effects on neural tissue. Thus, **Chapter 2** explores the principles of extracellular stimulation, neural excitability, interactions at the electrode-electrolyte tissue interface, and the electrochemical properties that affect the safety and therapeutic benefits of clinical DBS.

It is understood that DBS has effects not only at the stimulating electrode implantation target site but also in areas distal to the stimulated target that are structurally or functionally connected to it. To help the reader understand how neural networks are affected by pathology and DBS, **Chapter 3** reviews the basal ganglia-corticothalamic circuitry as represented by Parkinson's disease. It will help readers appreciate the complexity of the circuitry and its implications for DBS target structures that are part of it.

Neuroimaging is critical not only to surgical targeting of deep brain structures but also to research on the circuitry and neural network effects of DBS. **Chapter 4**, on imaging in DBS, provides a brief overview of fundamentals of magnetic resonance imaging and positron emission tomography and reviews the use of and advances in functional brain imaging for the study of DBS-evoked global changes in neural activation. **Chapter 5** reviews critical ethical issues in the use of DBS in patients with conditions commonly treated by DBS and those with conditions for which DBS is in the investigational stage.
The second section of the book, Clinical Applications, explores clinical impact of DBS for a wide range of neurologic and psychiatric conditions. Each of Chapters 6 through 15 describes a specific disorder, the deep brain structures that have been targeted to treat it, the rationale behind the DBS target choices, and clinical outcomes to-date. Chapter 16 describes the use of electrical stimulation to restore function following spinal cord injury. Although it does not involve DBS, specifically, it shares the goal of functional restoration by means of electrical stimulation. The chapter reviews the present progress in applying electrical stimulation systems that are transcutaneous and those that stimulate peripheral nerves or muscle fibers, as well as implanted epidural and intraspinal systems that stimulate the spinal cord directly.

The last section, Research on Mechanisms of DBS and Neuromodulation, has six chapters that cover theories and methods for studying the neurobiological effects of DBS. Chapter 17 reviews past and present hypotheses about the neuronal, metabolic, and physiologic mechanisms that underlie the therapeutic effects of DBS. Chapter 18 focuses on the understudied role of astrocytes and their potential contribution to DBS effects and mechanisms. Chapter 19 reviews the methods of measuring real-time DBS-evoked neurochemical changes in the brain, specifically in vivo voltammetry. These alterations in neurotransmitter release hold promise as a source of physiologically relevant information for future closed-loop feedback devices, which could fundamentally alter the delivery of DBS to minimize adverse effects and accentuate therapeutic outcomes. Chapter 20 provides the reader with an appreciation for the intricacies and complex design considerations of creating DBS stimulating and recording electrodes, including their size, shape, biocompatibility, electronic impedance, and surface chemistry. A biocompatible and durable chronic recording electrode can be considered the holy grail of future devices designed to use neurochemical or neurophysiologic feedback to control stimulation delivery. An explanation of closed-loop control systems for DBS, including electrophysiologic and neurochemical techniques and mathematical modeling, is provided in Chapter 21. The final chapter in the book, Chapter 22, explores another avenue of
neuromodulation: advances in molecular and cellular restoration that rely on biologic therapies to repair central nervous system dysfunction. It focuses primarily on spinal cord injury, but serves to alert the reader to the spectrum of scientific efforts in promoting functional restoration of central neural structures.

We would like to thank our contributors, each of whom has brought his or her individual expertise and experience to the task. Together we hope this book serves to introduce the reader to the clinical and basic science foundations and the advances and challenges of DBS, as well as to its history and its future as a means of advancing improved patient care through neuromodulation.

Kendall H. Lee, MD, PhD, Editor
Penelope S. Duffy, PhD, and Allan J. Bieber, PhD, Co-editors