Space–time transformations as a design tool for a new class of composite materials (metamaterials) have proved successful recently. The concept is based on the fact that metamaterials can mimic a transformed but empty space. Light rays follow trajectories according to Fermat's principle in this transformed electromagnetic, acoustic, or elastic space instead of laboratory space. This allows one to manipulate wave behaviors with various exotic characteristics such as (but not limited to) invisibility cloaks.

This book is a collection of works by leading international experts in the fields of electromagnetics, plasmonics, elastodynamics, and diffusion waves. The experimental and theoretical contributions will revolutionize ways to control the propagation of sound, light, and other waves in macroscopic and microscopic scales. The potential applications range from underwater camouflaging and electromagnetic invisibility to enhanced biosensors and protection from harmful physical waves (e.g., tsunamis and earthquakes). This is the first book that deals with transformation physics for all kinds of waves in one volume, covering the newest results from emerging topical subjects such as transformational plasmonics and thermodynamics.

Dr. Mohamed Farhat obtained his master’s degree in theoretical physics in 2006 and his PhD in optics and electromagnetics in 2010 from Aix-Marseille University, France. He has since been a postdoctoral fellow at the University of Texas at Austin, USA; the University of Jena, Germany; and the King Abdullah University of Science and Technology, Saudi Arabia. He has authored over 120 publications, including 50 journal papers, 4 book chapters, 2 international patents, and 60 conference papers, with over 1500 citations (h-index 20). He has also organized many special sessions at Metamaterials conferences and is an associate editor of Advanced Electromagnetics.

Dr. Pai-Yen Chen is an assistant professor in the electrical and computer engineering department at Wayne State University, USA. He received his PhD in electrical and computer engineering in 2013 from the University of Texas at Austin. He was a research scientist at the Metamaterial Commercialization Center (MCC), Intellectual Ventures Laboratory (IV-Lab), from 2013 to 2014 and an assistant researcher at the National Nano Device Laboratory, Taiwan, from 2006 to 2009. Dr. Chen has been involved in multidisciplinary research on high-frequency electronics, electromagnetics, and light wave technologies. He has received many prestigious honors, best-paper awards, and industrial scholarships.

Dr. Sebastien Guenneau is research director at Centre national de la recherche scientifique (CNRS), France. He graduated with a PhD in mathematical physics on homogenization of quasi-crystals and photonic crystal fibers in 2001 from Aix-Marseille University. He then worked as a postdoc and lecturer in London and Liverpool, UK. Dr. Guenneau currently works at Institut Fresnel on models of seismic metamaterials with an ERC grant. He has coauthored over 140 papers, has coedited 2 books, and holds 5 patents. He is an associate editor of Proceedings of the London Royal Society Series A and EPJ Applied Metamaterials.

Dr. Stefan Enoch obtained his PhD in 1997 from Aix-Marseille University. He then became an assistant professor there. In 2001, he joined the CNRS. He received the CNRS Bronze Medal in 2006. Dr. Enoch is currently a senior researcher at the CNRS and the director of Institut Fresnel. He is also a member of the editorial board of Journal of Modern Optics and was associate editor of Optics Express for eight years.
Transformation Wave Physics
Transformation Wave Physics
Electromagnetics, Elastodynamics, and Thermodynamics

edited by
Mohamed Farhat
Pai-Yen Chen
Sebastien Guenneau
Stefan Enoch
Contents

Preface xiii

1 Transformation Optics 1
Ulf Leonhardt
1.1 Introduction 1
1.2 Maxwell’s Electromagnetism 3
1.2.1 Maxwell’s Equations 3
1.2.2 The Medium of a Geometry 5
1.2.3 The Geometry of a Medium 7
1.3 Spatial Transformations 8
1.3.1 Invisibility Cloaking 8
1.3.2 Transformation Media 11
1.3.3 Perfect Imaging with Negative Refraction 12
1.4 Curved Space 14
1.4.1 Einstein’s Universe and Maxwell’s Fish Eye 14
1.4.2 Perfect Imaging with Positive Refraction 17
1.5 Space–Time Media 20
1.5.1 Space–Time Geometries 20
1.5.2 Magnetoelastic Media 20
1.5.3 Moving Media 22
1.5.4 Space–Time Transformations 23

2 Conformal Mapping in Transformation Optics 29
Kan Yao and Yongmin Liu
2.1 Introduction 29
2.2 The Basics of Optical Conformal Mapping 32
2.3 Transformation Optical Design with an Analogy Strategy 39
2.3.1 Analogies with Fluid Mechanics 40
2.3.1.1 Optical sinks 41
2.3.1.2 Airfoil carpet cloak 42
2.3.1.3 Magnus carpet cloak 46
2.3.2 Analogies with Electrostatics 47
 2.3.2.1 Charge lenses 48
 2.3.2.2 Capacitor waveguide bend 51
2.4 Transformation Plasmonics 52
 2.4.1 Transformation Optics for SPPs 52
 2.4.1.1 Carpet cloak for SPPs 53
 2.4.1.2 Plasmonic waveguiding devices 57
 2.4.2 GRIN Plasmonic Lenses 59
 2.4.3 Transformation Optics for LSPs 62
2.5 Conformal Mapping in Anisotropic Devices 66
 2.5.1 Devices from Stacked 2D Profiles 66
 2.5.1.1 Stereographic projection 67
 2.5.1.2 Collimating lenses and superantennas 69
 2.5.1.3 Geodesic waveguides for subwavelength imaging 73
 2.5.2 Devices of Azimuthal Invariance 74
2.6 Outlook 77

3 Quasiconformal Transformation Media and Their Electrostatic Analogy 89
 Jensen Li, Fu Liu, Zheng Chang, and Gengkai Hu
3.1 Introduction 90
3.2 Transformation Optics with Anisotropy Minimization 91
 3.2.1 Minimizing Anisotropy 91
 3.2.2 Electrostatic Analogy 94
3.3 Examples of Quasiconformal Transformation Media 98
 3.3.1 An Analytic Example 98
 3.3.2 Quasiconformal Map with Arbitrary Shape of Device Boundaries 100
 3.3.3 From Slipping Boundary to Fixed Boundary 103
3.4 Extension to Acoustic and Elastic Waves 104
 3.4.1 Acoustic Case 105
 3.4.2 Elastodynamic Case 107
3.5 Conclusion 111
Contents

4 Control of Electromagnetic Flux in Inhomogeneous Anisotropic Media

Jie Luo, Yun Lai, and C. T. Chan

4.1 Introduction 118

4.2 Inhomogeneous Anisotropic Zero-Index Media 119

4.2.1 Scatterings in Highly Anisotropic Media and EM Flux Redistribution 121

4.2.2 Robust High Transmission 126

4.2.3 Examples of EM Flux Control 128

4.2.4 Effect of Anisotropy 131

4.2.5 Effect of Loss and Failure of Effective Medium Theory 132

4.3 Applications in Waveguides 135

4.3.1 Waveguides with Irregular Boundaries 135

4.3.2 Bending Waveguides 140

4.3.3 Bending Waveguides with Irregular Boundaries 142

4.4 Inhomogeneous Anisotropic High-Index Media 146

4.5 Summary 147

5 Transmission-Line Metamaterials for Surface- to-Leaky-Wave Transformation

Chung-Tse Michael Wu, Pai-Yen Chen, and Tatsuo Itoh

5.1 Introduction 158

5.2 Principle of Transmission-Line Metamaterials 160

5.3 Guided and Radiated Modes of CRLH-TLS 164

5.4 Free-Space Scanning and Adaptive CRLH-LWAS 167

5.4.1 1D and 2D Beam Scanning 167

5.4.2 Tunable LWA 169

5.4.3 Active CRLH-LWA 171

5.4.3.1 Cascaded amplifiers 171

5.4.3.2 Distributed amplifier-based LWAs 171

5.4.3.3 Power-recycling schemes for DA-based CRLH-LWAs 173

5.5 Holographic Antennas Based on Metasurfaces 180

5.5.1 Introduction to Metasurface Technology 181

5.5.2 Principle and Practice of Holographic Antennas 182

5.6 Conclusions 185
6 Metasurfaces for Extreme Light Manipulation and Wave Control

Nasim Mohammadi Estakhri and Andrea Alù

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>6.2 Metasurface Design and Synthesis</td>
<td>198</td>
</tr>
<tr>
<td>6.2.1 Nanoresonators as Optical Phase Elements</td>
<td>208</td>
</tr>
<tr>
<td>6.2.2 Tunability, Frequency Dispersion, and Effect of Loss</td>
<td>213</td>
</tr>
<tr>
<td>6.2.3 Polarization Control in Optical Lumped Resonators</td>
<td>217</td>
</tr>
<tr>
<td>6.3 Beam Forming with Graded Metasurfaces</td>
<td>219</td>
</tr>
<tr>
<td>6.3.1 Optical Reflectarrays and Transmitarrays</td>
<td>220</td>
</tr>
<tr>
<td>6.3.2 Flat Lens</td>
<td>224</td>
</tr>
<tr>
<td>6.3.3 Polarization Beam Splitter</td>
<td>226</td>
</tr>
<tr>
<td>6.4 Other Potential Applications</td>
<td>228</td>
</tr>
<tr>
<td>6.4.1 Conformal Cloaking</td>
<td>229</td>
</tr>
<tr>
<td>6.4.2 Broadband Energy Harvesting</td>
<td>233</td>
</tr>
<tr>
<td>6.4.3 Nanoscale Signal Processing</td>
<td>235</td>
</tr>
<tr>
<td>6.5 Conclusions and Outlook</td>
<td>235</td>
</tr>
</tbody>
</table>

7 RF/Optical Scattering Manipulation Using Metasurface Coatings and Plasmonic Loadings

Zhi Hao Jiang, Anastasios H. Panaretos, and Douglas H. Werner

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>244</td>
</tr>
<tr>
<td>7.2 Metasurface Coatings for Cloaking and Illusion</td>
<td>245</td>
</tr>
<tr>
<td>7.2.1 Scattering from an Anisotropic Metasurface-Coated Cylinder</td>
<td>246</td>
</tr>
<tr>
<td>7.2.2 Metasurface Cloaking beyond the Quasi-Static Limit</td>
<td>250</td>
</tr>
<tr>
<td>7.2.2.1 Metasurface cloaking for dielectric cylinders</td>
<td>250</td>
</tr>
<tr>
<td>7.2.2.2 Metasurface cloaking for conducting cylinders</td>
<td>252</td>
</tr>
<tr>
<td>7.2.3 Angle-Tolerant Metasurface Illusion</td>
<td>257</td>
</tr>
<tr>
<td>7.3 Optical Plasmonic Core-Shell Particles Exhibiting Zero-Impedance and Zero-Admittance Properties</td>
<td>263</td>
</tr>
</tbody>
</table>
7.3.1 Elements of Radially Inhomogeneous Spherical Transmission Line Theory, and Impedance Characterization of a Core-Shell Particle 265
7.3.2 Zero-Impedance and Zero-Admittance Conditions on the Surface of a Core-Shell Particle 267
7.3.3 Material Interpretation of the Core-Shell’s Response 269
7.4 Tunable Optical Nanoantenna Loaded by Plasmonic Core-Shell Particles 271
7.4.1 Nanodipole Geometry and Response 272
7.4.2 Loading the Gap Volume with a Homogeneous Dielectric Sphere 276
7.4.3 Loading the Gap Volume with a Plasmonic Core-Shell Particle 277
7.5 Conclusion 280

8 Experiments on Cloaking for Surface Water Waves 287
Sebastien Guenneau, Guillaume Dupont, Stefan Enoch, and Mohamed Farhat
8.1 Introduction 287
8.2 Acoustic Cloaking for Liquid Surface Waves 289
8.2.1 From Navier–Stokes to Helmholtz 289
8.2.2 Transformed Helmholtz’s Equation on the Free Surface 292
8.2.2.1 Coordinate change for a water wave cloak 294
8.2.3 Effective Anisotropic Shear Viscosity through Homogenization 295
8.3 Homogenization of Helmholtz’s Equation 297
8.3.1 Numerical Analysis of LSW Cloaking 302
8.3.2 Experimental Measurements of LSW Cloaking 306
8.4 Water Wave Cloaks and Invisibility Carpets of an Arbitrary Shape 306
8.5 Conclusion 311
9 Cloaking for Heat and Mass Diffusion
Sebastien Guenneau, David Petiteau, Myriam Zerrad, Claude Amra, and Tania M. Puvirajesinghe
9.1 Introduction 313
9.2 Coordinates Changes as a Magic Potion to Control Convection-Diffusion Phenomena 316
9.3 Invisibility Cloak, Concentrator, and Rotator of an Arbitrary Shape for Diffusion Processes 319
 9.3.1 Diffusion Cloaks 319
 9.3.2 Diffusion Concentrators and Rotators 322
 9.3.3 Three-Dimensional Cloak of a Complex Shape for Diffusion Processes 325
9.4 Multilayered Cloak with Simplified Isotropic Parameters 326
 9.4.1 Two-Dimensional Multilayered Thermal Cloaks 327
 9.4.2 Three-Dimensional Multilayered Thermal Cloaks 327
9.5 Invisibility Carpet for Diffusion Processes: Mapping a Curved Surface on a Flat Surface 328
 9.5.1 Two-Dimensional Carpets 330
 9.5.2 Three-Dimensional Carpets 330
9.6 Concluding Remarks 332

10 Experiments on Cloaking in Electromagnetism, Mechanics, and Thermodynamics
Muamer Kadic, Robert Schittny, Tiemo Bückmann, and Martin Wegener,
10.1 Introduction 335
 10.1.1 True Cloaks 336
 10.1.2 Role of the Environment 337
 10.1.3 Design Approaches 338
10.2 From Transformations to Materials 338
 10.2.1 Laminate Metamaterials 341
10.3 Electromagnetism 344
 10.3.1 Optical Carpet Cloaks 345
10.4 Mechanics 347
 10.4.1 Flexural-Wave Cloaks 349
 10.4.2 Three-Dimensional Elastostatic Cloaks 352
Contents

10.5 Thermodynamics 356
 10.5.1 Heat Conduction Cloaks 356
 10.5.2 Light Diffusion Cloaks 357
10.6 Conclusions and Outlook 360

11 Transformation Multiphysics 369
 Massimo Moccia, Giuseppe Castaldi, Salvatore Savo, Yuki Sato, and Vincenzo Galdi
 11.1 Introduction and Background 370
 11.1.1 Coordinate-Transformation-Based Metamaterials 370
 11.1.2 Beyond Single Functionalities 371
 11.2 Models and Methods 372
 11.2.1 Transformation Media in Thermal and Electrical Domains 372
 11.2.2 Joint Synthesis of Effective Parameters 374
 11.2.3 Numerical Modeling 377
 11.3 Proof-of-Principle Example 379
 11.3.1 Thermal Concentrator and Electrical Cloak 379
 11.3.2 Preliminary Ideal Parameter Design 381
 11.3.3 Realistic Parameter Design 384
 11.4 Discussion 385
 11.4.1 Comparison with Conventional Material Shell 385
 11.4.2 Realistic Bounds 386
 11.5 Conclusions and Perspectives 388
 Appendix A: Details on Effective Medium Formulation 390
 Appendix B: Details on Coordinate Transformations 394

12 Time Reversal of Linear and Nonlinear Water Waves 401
 A. Chabchoub, A. Maurel, V. Pagneux, P. Petitjeans, A. Przadka, and M. Fink
 12.1 Introduction 401
 12.2 Surface Gravity Water Waves 402
 12.2.1 Linear Approximation 405
 12.2.1.1 Equations in the time domain 405
 12.2.1.2 Harmonic regime and flat bottom 406
Contents

12.2.1.3 2D equation in the harmonic regime for a flat bottom 408
12.2.1.4 Time reversal invariance in the linear regime 409

12.2.2 Nonlinear Regime 410
12.2.2.1 Stokes waves and modulation instability 410
12.2.2.2 Nonlinear Schrödinger equation and doubly localized breather-type solutions 411
12.2.2.3 Time reversal invariance in the nonlinear regime 415

12.3 Experiments of Time Reversal 415
12.3.1 Time Reversal of Linear Water Waves 415
12.3.2 Time Reversal of Nonlinear Water Waves 422

12.4 Discussion and Outlook 428
12.5 Conclusion 431

Index 437
Preface

The theory of composites is a vast and highly interdisciplinary topic that can be traced back to Lord Rayleigh’s work on effective medium formulae. John William Strutt, 3rd Baron Rayleigh, who earned the Nobel Prize in Physics in 1904 for his discovery of argon, is most famous among the wave community for Rayleigh scattering (for the layperson, this explains why the sky is blue) and Rayleigh waves that are, with Love waves, responsible for much of earthquake disasters in human infrastructures. Rayleigh’s textbook, *The Theory of Sound*, has been, together with Augustus Edward Hough Love’s monograph *Some Problems of Geodynamics*, an invaluable source of inspiration for generations of physicists, engineers, and mathematicians. Rayleigh waves are both longitudinal and transverse motions that decrease exponentially in amplitude as distance from the surface increases, so they are also known as surface Rayleigh waves, while Love waves are horizontally polarized surface waves.

Metamaterials are composites with extraordinary properties and were introduced in the context of electromagnetic waves by Sir John Pendry and his colleagues toward the end of the twentieth century, following the advent of photonic crystals. To achieve this tour de force Pendry proposed to combine split ring resonators and thin, straight wires, which exhibit, respectively, a negative permeability and a negative permittivity, the square root of which turns negative upon resonance (hence the negative refractive index!). The first experimental proof of negative refraction came in 2000 with the team of David Smith. Inspired by Victor Veselago’s 1968 proposal of a flat convergent lens via negative refraction, Pendry further proposed at the turn of the millennium a lens whose resolution is not limited by the wave wavelength, that is, with a resolution not limited by Rayleigh’s criterion on
resolution of optical instruments. Finally, 10 years ago, Pendry proposed, together with David Smith and David Schurig, a route toward invisibility, using coordinate changes in Maxwell’s equations, which leads to anisotropic heterogeneous tensors of permittivity and permeability. Ulf Leonhardt independently proposed to use conformal mappings to design invisibility cloaks without resorting to anisotropy. The paradigms of negative refraction, transformation optics, and conformal optics have revolutionized the field of photonics, as we have known it since the time of Snell and Descartes.

The present book explores theories and applications of metamaterials not limited to the control of electromagnetic waves. It is a collection of works by leading international experts in the fields of electromagnetics, plasmonics, hydrodynamics, elastodynamics, and diffusion waves.

It starts by a survey (by the world-famous theoretical physicist Leonhardt) of space–time transformations as a design tool for metamaterials underpinning intimate connections between Maxwell’s equations and Einstein’s theory of relativity, and then the book moves on to practical applications in the control of radio frequency and microwaves, water waves, mechanical waves, and even heat and mass diffusion. We stress that all these contributions promise to revolutionize ways of controlling the propagation of sound, light, and any particular form of waves at macroscopic and microscopic scales. Indeed, potential applications range from subwavelength lensing and time reversal, to underwater camouflaging and electromagnetic invisibility, to enhanced biosensors and protection from harmful physical waves (e.g., tsunamis and earthquakes). This volume covers theoretical as well as experimental aspects in these different areas that include nanoscale (plasmonics) and meter-scale (geophysics) media.

The outline of the chapters is as follows:

As mentioned earlier, the book starts with a chapter by Leonhardt, which describes how theoretical ideas arising from Einstein’s general theory of relativity in optical and electrical engineering for designing devices can do the (almost) impossible: invisibility cloaks, perfect imaging, levitation, and the creation of
analouges of the event horizon. This chapter gives an introduction to this field requiring minimal prerequisites.

The second chapter, by the group of Liu, reviews the fundamentals and applications of conformal mapping in transformation optics. It first introduces the basics of conformal mapping and how this subset of transformations in the complex plane can eliminate the undesired anisotropy in 2D systems. It then presents metamaterials with minimized anisotropy derived by quasi-conformal mapping; it addresses the promising applications for plasmonics, where conformal mapping manifests its versatility when dealing with the surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs). Interestingly, an attempt is made at applying conformal mapping to the construction of 3D devices.

The third chapter, by the group of Li, further investigates quasi-conformal map as a useful tool for minimizing anisotropy, while the index range can be further minimized by avoiding sharp corners at boundaries. Analytic and numerical approaches show that the corresponding map generation can be simplified by taking an electrostatic analogy. Extension to acoustic and elastic waves is proposed for carpet cloaks. These considerations are useful in a wide class of applications such as invisibility cloaks and optimized integrated devices at the optical wavelengths.

The fourth chapter, by the group of Chan, introduces a mechanism to control the spatial distribution of either an electric or a magnetic field instead of both fields, which can be controlled in an almost arbitrary manner in wavelength and subwavelength scales. Interestingly, the principle of flux control does not rely on surface waves as in the field of plasmonics, but relies on the evanescent waves induced by the strong anisotropy and designed inhomogeneity of media. Such inhomogeneous anisotropic media exhibit surprisingly robust high transmittance. Combined with transformation optics, such high transmittance property can be utilized to build waveguide devices with almost arbitrary shapes and bending angles.

The fifth chapter, by the group of Itoh, reviews progress on radio frequency and microwave beam-forming techniques using planar metamaterials and metamaterial surfaces (metasurfaces). Principles
and physics of guided- and leaky-wave characteristics of periodic planar structures are discussed, such as transmission-line-based metamaterials, followed by their active versions that enable novel smart antennas with beam-steering functions. Practical realizations are discussed, as well as the integration with active elements and circuits, which enables adaptively tailoring electromagnetic waves. Planar metamaterial-/metasurface-based beam-forming techniques are clarified through a critical assessment and comparative analysis in the radio-frequency and microwave bands. These techniques offer promising applications in modern wireless communication, radar, remote sensing, and medical and security imaging.

The sixth chapter, by the group of Alù, aims at providing a comprehensive insight into recent developments and applications of gradient metasurfaces to control and engineer the propagation of electromagnetic waves. Various aspects of this technology are explored, starting from miniaturized metasurface building blocks at the lowest level, moving to primary optical elements for radiation patterning, and ultimately incorporating graded metasurfaces into more complex optical devices.

The seventh chapter, by Douglas and Werner, presents scattering manipulation of objects using anisotropic metasurfaces in the microwave range and plasmonic loadings at optical wavelengths. Different from previously reported transformation optics–enabled coatings, they are achieved on the basis of modifying the complex Mie scattering coefficients of an object. The nonvanishing radial response of an anisotropic metasurface is exploited to accomplish near-perfect cloaking and angle-tolerant illusion for objects beyond the quasi-static limit. It is also demonstrated how plasmonic core–shell particles can provide a compact and robust solution toward the realization of nanocircuit loads that offer unprecedented flexibility in tuning the response of a nanodipole-type antenna. Indicative examples are provided that demonstrate the tuning range that core–shell particles are capable of offering.

The eighth chapter, by some of this book’s editors, emphasizes that metamaterials can mimic a transformed space in many wave physics areas. The light rays follow trajectories according to Fermat’s principle in transformed electromagnetic, acoustic,
hydrodynamic, or elastic space, instead of the laboratory space. Homogenization techniques are used to approach such media. This allows one to ultimately manipulate electromagnetic, water, and mechanical wave behaviors, with various exotic characteristics, such as (but not limited to) invisibility cloaks and flat convergent lenses.

The ninth chapter, by the group of Puvirajesinghe, investigates transformational techniques applied to diffusion phenomena. Coordinates transform in the Fourier and Fick’s equations bridges transformational thermodynamics to control of mass diffusion. Potential applications range from invisibility cloaks and concentrators for control of heat flux in electronics to biocloaks enabling delayed drug delivery for medical applications.

The tenth chapter, by the group of Wegener, points out that cloaking can be seen as a look-alike contest: the goal is to make some object A appear like another object B with respect to some physical observable. Early mathematical literature has indeed spoken of the nonuniqueness of the tomography (inverse) problem with the works of Calderon (1980), Kohn and Vogelius (1984), and Greenleaf et al. (2003). The experiments discussed in this chapter concern the observables light, sound, elastic waves, static elasticity, electric conduction, heat conduction, and particle diffusion.

The eleventh chapter, by the group of Sato, refreshes our mind with geometrical interpretation to required material parameters through linear-algebraic operations, before moving on to a systematic approach for designing a single functionality in a given physical domain. In this chapter, an extension of the transformation optics formalism is proposed to go beyond a single functionality to independently manipulate multiple physical phenomena simultaneously. A multifunctional shell behaving as an electrical invisibility cloak and a thermal concentrator opens a route to transformation multiphysics.

The twelfth, and last, chapter of the book, by the group of Maurel and Fink, takes us on a journey to the wonderland of time reversal of acoustic, elastic, and electromagnetic waves. In a standard time reversal experiment, waves generated by a source are first measured by an array of antennas positioned around the source and then time-reversed and simultaneously rebroadcasted
by the same antenna array. Due to the time invariance of the wave process, the reemitted energy will focus back on the original source, whatever the complexity of the propagation medium. This chapter concentrates on the application of time reversal to the focusing and manipulation of water waves both in linear and nonlinear regimes. Applications are sought in water waves that are scalar waves referring to the evolution of small perturbation of the height of fluid under the action of gravity and surface tension. They are dispersive by nature, nonlinear when generated with standard wave makers, and they experience strong damping at the scale of laboratory experiments. The evolution dynamics in time and space of nonlinear wave trains in deep water can be modeled using the focusing nonlinear Schrödinger equation. The implication of the time reversal invariance on the nonlinear Schrödinger equation is discussed and a way to experimentally focus, both in time and space, rogue waves using the principles of time reversal mirrors is demonstrated.

As you can see, this book therefore touches upon many hot subjects in the physics of metamaterials, which were discovered less than 20 years ago. The first direct experimental evidence of gravitational waves that are ripples in the curvature of space–time that propagate like waves traveling outward from a source (say, two black holes falling onto one another) came in January 2016, that is, one century after Einstein foresaw their existence as a solution to his equations of general relativity. The experimental evidence of Higg’s boson came just over two years ago. Graphene was discovered just over a decade ago. We have therefore lived an exciting new millennium of advances in physics thus far, and needless to say that this would already be even to fill with joy the life of any human being, but we believe that metamaterials offer a playground for many new discoveries. We hope that the present book will help foster theoretical and experimental efforts toward a brave new physics world!

We would like to convey our warmest thanks to all chapter authors for their excellent scientific contributions and their willingness to share their knowledge of metamaterials with a general readership. The assistance and professionalism of the Pan Stanford Publishing team is also greatly acknowledged.
We hope that you’ll enjoy reading these chapters and find them as informative as we did!

Mohamed Farhat
Pai-Yen Chen
Stefan Enoch
Sebastien Guenneau
Thuwal, Detroit, and Marseille