Plasmonic resonators, composed of metallic micro- and nanostructures, belong to the category of excited-state physics on resonances from gigahertz to petahertz. Dynamical physics is in contrast to ground-state physics, which includes thermal states, and is connected to diverse applications to enhance existing photo-induced effects and phenomena such as plasmon-enhanced photoluminescence and Raman scattering. This book has three main aims: to provide fundamental knowledge on plasmonic resonators, to explain diverse plasmonic resonators, and to stimulate further development in plasmonic resonators.

Plasmon-related studies, which are sometimes called plasmonics and include a substantial portion of metamaterials, have shown significant development since the 1980s. The piled-up results are too numerous to study from the beginning, but this book summarises those results, including the history (past), all the possible types of plasmonic resonators (present), and their wide range of applications (future). It provides the basics of plasmons and resonant physics for undergraduate students, the systematic knowledge on plasmonic resonator for graduate students, and cutting-edge and in-depth information on plasmon-enhancement studies for researchers who are not experts in plasmonics and metamaterials, thereby benefitting a wide range of readers who are interested in the nanotechnology involving metallic nanostructures.

Packed with concise yet informative descriptions of the theoretical (classical and quantum mechanical) framework of excited physics and all the possible kinds of plasmonic resonators or structures, this is a definitive textbook on plasmons written from a unified viewpoint.

Masanobu Iwanaga graduated from Kyoto University, Japan, in 1998 and received his doctorate from the same university in 2003. Since then, he was an assistant professor at the Department of Physics, Tohoku University. Now, he is affiliated to the National Institute for Materials Science (NIMS), Japan, which he joined in 2009.
Plasmonic Resonators
Plasmonic Resonators
Fundamentals, Advances, and Applications

Masanobu Iwanaga

PAN Stanford Publishing
To my family

with thanks for longtime support
Contents

Preface xi
Acknowledgments xiii

1 Introduction 1
1.1 Plasma Frequency: Concept of Bulk Plasmon 2
1.2 Optical Constants in Metals 6
1.2.1 Electromagnetic Responses and Constants 6
1.2.2 Drude Metal 9
1.2.3 Actual Metals: Comparison of Ag, Au, Al, . . . 11
1.3 Metal–Insulator Interface Where Surface Plasmon Polaritons (SPPs) Emerge 16
1.4 Brief Overview of the History 22
1.4.1 Early Studies on SPPs 22
1.4.2 Era of Nanotechnology and Dawn of Plasmonics 31
1.4.3 Metamaterials (MMs) 35
1.4.4 Recent Trends in Plasmonics and MMs 44
1.5 Numerical Methods 48
1.5.1 Rigorous Coupled-Wave Analysis (RCWA) and Scattering (S) Matrix 48
1.5.2 Finite-Difference Time-Domain (FDTD) Method 58
1.5.3 Finite-Element Method (FEM) 60
1.6 Nanofabrication Methods 61
1.7 Summary 65

2 Response Function Theory 75
2.1 Classical Model for Response Function 77
2.2 Quantum Mechanical Description for Response Function 80
2.3 Spectral Theory 84
 2.3.1 Fano Resonance 84
 2.3.2 Spectral Analysis for Fano Resonances 89
2.4 Generalized Theory for Response Function 94
2.5 Summary 102

3 Plasmonic Resonators 105
 3.1 Plasmonic Waveguides 106
 3.1.1 MIM: Single I Layer between Semi-Infinite M Layers 107
 3.1.2 IMI: Single M Layer between Semi-Infinite I Layers 109
 3.1.3 IMIMI: MIM Layers between Semi-Infinite I Layers 110
 3.2 Nanoparticle (NP) Plasmonic Resonators 112
 3.2.1 Mie Resonances in Metallic Spheres 114
 3.2.2 Modified Mie Resonances 117
 3.2.3 Planar Array of Metallic Disks 117
 3.3 NP-Assembled Plasmonic Resonators 119
 3.3.1 Gap Plasmons and Nanoantenna 121
 3.3.2 Hybridized Plasmons 129
 3.4 Single-Layer Lattices 130
 3.4.1 Periodically Perforated Metallic Films 131
 3.4.2 Array of Plasmonic Resonators 135
 3.5 Collective Oscillation Associated with Longitudinal Component in Plasmonic Resonators 137
 3.6 Plasmonic Resonators of Simply Stacked Structures 140
 3.6.1 Three-Dimensional (3D) Stacking Array of Metallic Spheres 140
 3.6.2 Stratified Metal–Insulator Metamaterials (SMIMs) 143
 3.6.3 Application of SMIMs (1): Hyperlens 150
 3.6.4 Application of SMIMs (2): Subwavelength Optical Devices 156
 3.6.5 Fishnet MMs 161
 3.7 Plasmonic Resonators with Chirality 167
 3.8 Plasmonic Resonators of Stacked Complementary (SC) Structures: Heteroplasmon Hybridized States 169
3.8.1 Babinet’s Principle 169
3.8.2 Extremely Anisotropic Local Plasmons 171
3.8.3 Hybridization of Heteroplasmonic Resonances 175
3.9 Perfect Absorbers 193
3.10 Summary 200

4 Nonlocality on Plasmonic Resonances 209
4.1 Nonlocal Responses in Far-Field Spectra 210
4.2 Nonlocal Responses in Near-Field Scattering 214
4.3 Optical Nonlocality in Plasmonic Resonators 219
 4.3.1 Linear Response Regime 219
 4.3.2 Nonlinear Response Regime 222
4.4 Summary 222

5 Plasmonic Enhancement 225
5.1 Principles of Plas* 226
5.2 Purcell Effect 228
5.3 PlasPL 233
 5.3.1 PlasPL with Plasmonic Resonators 233
 5.3.2 PL Enhancement in Photonic Crystals 237
 5.3.3 Nonradiative (NR) Decay Rate on Flat Surface 239
5.4 Surface-Plasmon-Amplified Stimulated Emission Resonators (SPASER) 247
5.5 Strong Coupling of Plasmons with Excitons and Other Resonances 250
5.6 PlasRaman 255
 5.6.1 Surface-Enhanced Raman Scattering (SERS) 255
 5.6.2 Tip-Enhanced Raman Scattering (TERS) 260
 5.6.3 Surface-Enhanced Infrared Absorption (SEIRA) 261
5.7 PlasCat 262
5.8 PlasNLO 266
5.9 Other Plas* 272
5.10 IR Emitters 274
 5.10.1 A Practical mid-IR Thermal Emitter 274
 5.10.2 Roles of Plasmonic Resonators at mid-IR Range 277
5.11 Summary 278
Contents

6 Future Prospects 287
 6.1 Status After two Decades Since the Era of Nanotechnology 287
 6.1.1 Progress Achieved to Date 287
 6.1.2 Comparison of Plasmonic Resonators with Other Materials or Artificial Structures 288
 6.2 Directions Being Opened 292
 6.3 Challenges in Near Future 294
 6.4 Concluding Remarks 295

Appendix A: Abbreviations and Symbols 299
 A.1 Abbreviations 299
 A.2 Symbols 302

Index 305
Preface

Plasmonic resonators, composed of metallic micro- and nano-structures, belong to category of excited-state physics on resonances at gigahertz to petahertz. Dynamical physics is in contrast to ground-state physics that includes, in a wide sense, thermal states.

Considering the above feature, this book has three main aims.

1. To provide fundamental knowledge on plasmonic resonators. Optical properties in metals, Maxwell equations, and fundamental physical theory on resonances, i.e., response function theory are described. In addition, the history of plasmonic resonators is addressed.

 Chapters 1, 2, and 4 are mostly devoted to this purpose.

 This part will be useful for students.

2. To convey information about the diverse plasmonic resonators. The field of plasmonic resonators is already quite developed, and this fact seems to suggest that there is not much room left to find new types of plasmonic resonators. Therefore, this book is most likely enough to know the possible types of plasmonic resonators.

 Chapter 3 is responsible for this purpose and is based on experimentally examined plasmonic resonators.

 This part will be informative for a wide range of readers.

3. To stimulate further development on plasmonic resonators. Plasmonic resonators have already attained several examples realizing significant plasmon-enhanced effects.

 Chapter 5 mainly addresses experimental results, which are more than the simple electric-field enhancement and are based on more in-depth strategies. This direction, I expect, will enable researchers to achieve substantial progress in the next 5 years or so.
Chapter 6 provides a summary and discusses the future prospects related to plasmonic resonators.

This part will be a starting point to (near) future establishments on plasmonic resonators.

More specifically, this book is organized as follows.

- Chapter 1 describes the basics of plasmonic resonators such as optical properties of metals and surface plasmon polariton and surveys the history of plasmon studies in which metallic thin films, gratings, extraordinary transmission, and metamaterials appear.
- Chapter 2 is devoted to response functions in view of both classical and quantum mechanics. Configuration-interaction theory is also addressed with some analyses based on the Fano resonances.
- Chapter 3 addresses the various plasmonic resonators that have been found to date. A new class of plasmonic resonators, termed stacked complementary (SC) plasmonic resonators, is also included.
- Chapter 4 is devoted to nonlocal responses by metal and plasmons, and to optical nonlocality in plasmonic resonators.
- Chapter 5 describes the recent advances in various plasmonic enhancement, designated as Plas*, and in a few applications.
- Chapter 6 is devoted to future perspectives, which are awaiting challenges in the near future.

I hope that readers will grasp the basics of plasmonic resonators and that this book will help the readers contribute to the diverse applications in the near future. The book does not provide the conclusions on plasmonic resonators but intends to stimulate further advances based on the progress to date. On finishing this manuscript, I realize that there is much room for plasmonic resonators to develop.

Masanobu Iwanaga
Tsukuba, Japan
June 2016
Acknowledgments

The author is grateful to the colleagues in NIMSa for daily discussions. In particular, I would like to thank Dr. Bongseok Choi for his contributions to the nanofabrications of plasmonic resonators; some of the experimental results in this book are owing to his contributions.

I also acknowledge financial supports by grants: JSPSb KAKENHI (Grant numbers 26706020, 26600121), MEXTc KAKENHI (Grant number 22109007), JSTd PRESTO Program, NIMS 3rd midterm research project “Innovative Photonic Materials,” and Seeds Development Research Grants in NIMS. In addition, I am grateful for the support in numerical implementations by Cyber-science Center, Tohoku University and Cybermedia Center, Osaka University through HPCIe System Research Projects (IDs: hp120066, hp140068, hp150043) in Japan.

aNational Institute for Materials Science, Japan.
bJapan Society for the Promotion of Science.
cMinistry of Education, Culture, Sports, Science and Technology, Japan.
dJapan Science and Technology Agency.
eHigh Performance Computing Infrastructure.