With the phenomenal development of electromagnetic wave communication devices and stealth technology, electromagnetic wave absorbing materials have been attracting attention as antielectromagnetic interference slabs, stealth materials, self-concealing technology, and microwave darkrooms. This book starts with the fundamental theory of electromagnetic wave absorption in loss medium space, followed by a discussion of different microwave absorbents, such as manganese dioxide, iron-based composite powder, conductive polyaniline, barium titanate powder, and manganese nitride. Then, structural absorbing materials are explored, including multilayer materials, new discrete absorbers, microwave absorption coatings, cement-based materials, and structural pyramid materials. Many of the graphics demonstrate not only the principles of physics and experimental results but also the methodology of computing.

The book will be useful for graduate students of materials science and engineering, physics, chemistry, and electrical and electronic engineering; researchers in the fields of electromagnetic functional materials and nanoscience; and engineers in the fields of electromagnetic compatibility and stealth design.

Yuping Duan studied materials science and technology at the Dalian University of Technology, Liaoning, China, and received his PhD in materials science and engineering in 2006. He is a professor in the School of Materials Science and Engineering. For more than 15 years, he has researched and taught about electromagnetic functional materials. He has authored (and coauthored) many research papers in the field of microwave absorbing materials.

Hongtao Guan is associate professor in the School of Materials Science and Engineering at Yunnan University, China. He received his PhD in materials engineering in 2006 from the Dalian University of Technology. His research focuses on nanostructured materials, particularly manganese oxides, for applications in electromagnetic absorption and electrochemical energy storage.
Microwave Absorbing Materials
Microwave Absorbing Materials

Yuping Duan
Hongtao Guan
Published by
Pan Stanford Publishing Pte. Ltd.
Penthouse Level, Suntec Tower 3
8 Temasek Boulevard
Singapore 038988

Email: editorial@panstanford.com
Web: www.panstanford.com

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Microwave Absorbing Materials
Copyright © 2017 by Pan Stanford Publishing Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4745-10-9 (Hardcover)
ISBN 978-981-4745-11-6 (eBook)

Printed in the USA
Contents

Preface
xiii

1. Fundamentals of Electromagnetic Wave Absorbing Theory
1.1 Plane Electromagnetic Wave in Lossy Medium Space
1.1.1 Low-Loss Medium
1.1.2 High-Loss Medium
1.2 Reflection and Refraction of Uniform Plane Waves
1.2.1 Vertically Incident, Uniform Plane Electromagnetic Waves on the Interface
1.2.1.1 Interface between an ideal medium and an ideal conductor
1.2.1.2 Interface of an ideal medium
1.2.2 Normal Incidence on the Interface of Multilayered Media
1.2.2.1 Quarter-wave matching layer
1.2.2.2 Half-wavelength dielectric window
1.2.3 Oblique Incidence of Uniform Plane Electromagnetic Waves on the Interface
1.2.3.1 Oblique incidence on the surface of an ideal medium plane
1.2.3.2 Oblique incidence of an ideal conductor plane
1.3 Theoretical Fundamentals of Absorbing Materials
1.3.1 Property Characterization of Absorbents
1.3.1.1 Electromagnetic parameters and absorbing properties
1.3.1.2 Confirmation of electromagnetic parameters
1.3.1.3 Electromagnetic parameters of absorbing materials with different absorbent content 24
1.3.2 Density of Absorbents 25
1.3.3 Particle Size of Absorbents 26
1.3.4 Shapes of Absorbents 26
1.3.5 Technological Properties 27
1.3.6 Chemical Stability and Environmental Performance 27

2. Manganese Dioxide Absorbents 31
 2.1 Different Crystalline Structures and Composition of MnO₂ 32
 2.1.1 Polymorphism 32
 2.1.2 Microwave Properties 36
 2.1.3 Reflection Loss 40
 2.2 Effects of a High Magnetic Field on MnO₂ 42
 2.2.1 Morphology of MnO₂ Synthesized in a Different Magnetic Field 42
 2.2.2 Phase Structure and Compositional Analysis 43
 2.2.3 Electromagnetic Properties 46
 2.2.4 Electromagnetic Wave Absorption Properties 48
 2.3 Doped MnO₂ 50
 2.3.1 Fe-Doping Manganese Oxides 50
 2.3.1.1 Synthesis 50
 2.3.1.2 Phase structure and composition analysis 51
 2.3.1.3 Morphology analysis 54
 2.3.1.4 Electromagnetic properties 57
 2.3.2 Ni-/Co-Doping Manganese Oxides 61
 2.3.2.1 Synthesis 61
 2.3.2.2 Structure analysis 61
 2.3.2.3 Microstructure and morphologies 63
 2.3.2.4 Microwave dielectric response of Ni-/Co-doped MnO₂ 64
2.4 Temperature-Dependent Dielectric Characterization 67
 2.4.1 Synthesis of MnO$_2$ Nanostructures 67
 2.4.2 Effect of Temperature on Dielectric Properties of MnO$_2$ 68
2.5 Theoretical Study of MnO$_2$ 70
 2.5.1 Method and Computational Details 70
 2.5.2 Magnetism Properties 71

3. Fe-Based Composite Absorbers 79
 3.1 FeSi Alloy 80
 3.1.1 Electromagnetic Properties 81
 3.1.2 Microwave Absorption Properties 83
 3.1.3 Carbonyl-Iron/FeSi Composites 86
 3.1.3.1 EM characteristics 86
 3.1.3.2 Microwave absorption properties 88
 3.2 Fe-Co-Ni Alloy 90
 3.2.1 Magnetic Response 94
 3.2.1.1 Saturation magnetization (M_S) and coercivity (H_C) 96
 3.2.1.2 Electromagnetic parameter 98
 3.2.2 Microwave Absorption Property 99
 3.2.2.1 Loss tangent of magnetic/dielectric 100
 3.2.2.2 Coefficient of electromagnetic matching (δ) 101
 3.2.2.3 Impact factor of simulation thickness (d) 102
 3.3 Fe-Ni Alloy 102
 3.3.1 Computational Methods and Crystal Structure 103
 3.3.2 Crystal Structures and Phase Stability of the Fe-Ni Alloy 105
 3.3.3 Electronic Properties 106
 3.3.4 Mulliken Population and Charge Density 108
 3.3.5 Magnetic Properties 110
 3.4 Fe-Si-Al Alloy 112
 3.4.1 Saturation Magnetization (M_S) 115
3.4.2 Coercivity (H_C) 118
3.4.3 Complex Permeability 119
3.4.4 Microwave Absorption Property 121

4. Conductive Polyaniline 129
4.1 Electromagnetic Properties of Doped PANI 130
4.1.1 Structure Characterization 131
4.1.2 Morphologies 134
4.1.3 Electrical Properties of Redoped PANI 135
4.1.4 Dielectric Properties 138
4.1.5 Microwave Absorbing Properties 141
4.2 Electromagnetic Properties of γ-MnO$_2$/Polyaniline Composites 143
4.2.1 FT-IR Spectral Analysis 143
4.2.2 XRD Analysis 145
4.2.3 Morphologies 146
4.2.4 Electrical Properties 146
4.2.5 Electromagnetic Parameters 147
4.2.6 Microwave Absorbing Properties 148
4.3 Theoretical Investigation of Polyaniline 150
4.3.1 Excited-State Hydrogen-Bonding Dynamics of Camphorsulfonic Acid–Doped Polyaniline 150
4.3.2 Theoretical Investigation of the Protonation Mechanism 154

5. Other Absorbents 163
5.1 Electromagnetic Properties: Barium Titanate Powder 163
5.1.1 Thermal Analysis (DTA and TG) 164
5.1.2 Microstructure and Morphology Analysis 164
5.1.3 Microwave Electromagnetic Properties of FBT 167
5.2 Mn$_4$N Absorber 172
5.2.1 Magnetic Properties 174
5.2.2 Microwave Electromagnetic Properties 175
5.2.2.1 Effect of temperature on microwave electromagnetic properties of Mn$_4$N 175
5.2.2.2 Effect of grain size on microwave electromagnetic properties of Mn$_4$N 180
5.2.2.3 First-principles calculations 183

6. Hybrid Microwave Absorbers 189
 6.1 Introduction 190
 6.2 Composition and Structure of the Composite Absorbing Material 191
 6.2.1 Equality Distribution 192
 6.2.2 Layered Distribution 193
 6.2.3 Spherical Shape Distribution 194
 6.2.4 Distribution in Open Porous Foam 194
 6.3 Structure Type of the Absorber 195
 6.3.1 Radar Absorbing Coating Material 196
 6.3.1.1 Absorbing-type radar absorbing coating: Dallenbach coating 196
 6.3.1.2 Interference-type radar absorbing coating: Salisbury absorption screen 197
 6.3.1.3 Resonance absorbing coating 199
 6.3.1.4 New emerging wave absorbing coatings 200
 6.3.2 Structural Absorbing Materials 201
 6.3.2.1 Absorbing layer with board structure 201
 6.3.2.2 Sandwich absorber 202
 6.3.2.3 Frequency-selective surface absorbing structure 204
 6.3.2.4 Circuit simulation absorber 204
 6.3.2.5 Ferrite grid structure 205
 6.3.2.6 Pyramidal absorbing structure 206
 6.4 Epoxide Resin Composites 208
 6.4.1 Epoxide Resin/Barium Titanate Composites 209
 6.4.2 Epoxide Resin/Barium Titanate and Carbon Black Composites 211
 6.4.2.1 Electric conductivity 212
6.4.2.2 Microwave absorption properties 213
6.4.3 Double-Layer Absorber: α-Manganese Dioxide and Carbon Black Composites 215
6.4.4 Double-Layer Absorber: Carbonyl-Iron/Carbon Black 217
 6.4.4.1 Effect of CIP content on microwave absorption properties 217
 6.4.4.2 Effect of CB content on microwave absorption properties 218
 6.4.4.3 Effect of thickness on the microwave absorption properties 220
6.4.5 Double-Layer Absorber Reinforced with Carbon Fiber Powders 221
 6.4.5.1 Section morphology 221
 6.4.5.2 Microwave absorption properties 222
 6.4.5.3 Comprehensive analysis of additional CFP 225
6.4.6 Influence of Matching Fillers SiO$_2$ 227
 6.4.6.1 Section morphology 228
 6.4.6.2 Microwave absorbing properties 228
6.5 Polyurethane Varnish Composites 231
 6.5.1 PU/CIP Composites 231
 6.5.1.1 Section morphology 232
 6.5.1.2 Microwave absorbing properties 232
 6.5.2 PU/CB, FSA, and nmCIP Composites 236
 6.5.2.1 Section morphology 236
 6.5.2.2 Microwave absorbing properties 238
 6.5.3 Discrete Slab Absorber: PU/CB/ABS Composites 242
 6.5.3.1 Electrical conductivity 242
6.5.3.2 Microwave absorption properties 243

6.6 Other Resins 245
6.6.1 Silicone Rubber/Carbonyl-Iron Composites 245
 6.6.1.1 Influence of carbonyl-iron powder filling ratio 245
 6.6.1.2 Influence of sample thickness 246
6.6.2 Double-Layer Absorber: Natural Rubber Composites 248
6.6.3 Chlorinated Polyethylene/CIP Composites 249
6.6.4 Water-Based Varnish/Carbonyl-Iron Composites 253
 6.6.4.1 Section morphology 254
 6.6.4.2 Microwave absorbing properties 255
6.6.5 Acrylonitrile-Butadiene-Styrene/Carbon Black Composites 258
 6.6.5.1 Section morphology 259
 6.6.5.2 Electrical conductivity 259
 6.6.5.3 Microwave absorption 262

7. Cement-Based Electromagnetic Functional Materials 273
7.1 Electrical Properties of Cement Materials 275
 7.1.1 Electrical Property Measurements 276
 7.1.2 Relationship between Electrical Property and Hydration 279
 7.1.3 Applications of Electrical Properties of Cement-Based Materials 286
 7.1.3.1 Monitoring of nondestructive features 286
 7.1.3.2 Structural health monitoring 292
7.2 Cement-Based Electromagnetic Shielding Materials 296
 7.2.1 Carbon Filling Cement-Based Materials 298
 7.2.1.1 Graphite 298
 7.2.1.2 Carbon fibers 300
 7.2.1.3 Carbon nanotubes 301
7.2.1.4 Graphene and reduced graphene oxide 303
7.2.2 Metal Filling Cement-Based Materials 305
7.3 Cement-Based Electromagnetic Absorbing Materials 307
 7.3.1 Electric Loss Cement-Based Materials 308
 7.3.2 Dielectric Loss Cement-Based Materials 312
 7.3.3 Magnetic Loss Cement-Based Materials 315
 7.3.4 Cement-Based Porous Composites 321
 7.3.4.1 The absorption mechanism analysis 323
 7.3.4.2 Electromagnetic absorbing properties of EPS/cement composites 326
 7.3.4.3 Electromagnetic absorbing properties of double-layer cement composites 329
7.4 Summary 332

8. Structural Pyramid Materials 345
 8.1 Design and Analysis of Pyramid Absorbers 346
 8.1.1 The Pyramid’s Height 346
 8.1.2 Design of the Vertex Angle 346
 8.1.3 The Base’s Height 352
 8.2 Resonant Absorber Based on Carbon-Coated EPS 352
 8.2.1 Design of the Filling Method 352
 8.2.1.1 Horizontal stratification distribution 352
 8.2.1.2 Cubic distribution 352
 8.2.2 Theoretical Analysis 353
 8.2.2.1 Spherical resonant cavity model 353
 8.2.2.2 Rectangular resonant cavity model 355
 8.2.2.3 Single sphere scattering and absorption analysis 356
 8.2.2.4 Multiple scattering analyses 361
 8.3 Test for Microwave Absorbing Capacity 364

Index 371
Due to their extensive applications in military stealth technology, most of the research on microwave absorbing materials has been kept secret and classified over the years. In the recent past, with increasing requirements for microwave absorbing performances of these materials and their prosperity in civil applications, new kinds of microwave absorbing materials have emerged, and either their absorbing mechanisms or their applications have attracted considerable attention and made pronounced progress.

This book presents a concise scope of modern microwave absorbing materials, also known as electromagnetic absorbing materials, and their absorption characterizations. The objective is to provide a sound understanding of the fundamentals and concepts of microwave absorbing theories, which also form the basis of the principles of microwave absorbing materials and their absorbing mechanisms.

The content in this book is presented in eight chapters. Chapter 1 is devoted to the fundamental aspects of interactions between electromagnetic waves and microwave absorbing materials. On the basis of principle theory, the crucial factors which may influence the absorbing performances of microwave absorbing materials, such as density, particle size, shape, chemical compositions, and stability, are also included. Chapters 2 to 5 discuss traditional microwave absorbing materials based on manganese oxides, iron matrix alloys, conductive polyanilines, and barium titanates. The preparation techniques and their electromagnetic characterizations are also dealt with. Chapters 6 to 8 give a description of hybrid microwave absorbers, cement matrix absorbing materials, and structural pyramidal materials. Chapter 6 also gives an overview of two main absorbers, absorbing coatings and absorbing structures. Several representative absorbing coatings and structures based on epoxide resin, polyurethane (PU) varnish, silicon rubber, and acrylonitrile-butadiene-styrene (ABS) are introduced briefly. Chapter 7 elaborates on the electrical and electromagnetic properties of cement-based
composite materials filled with carbon materials, metal fillers, and porous fillers. On the basis of the microwave absorbing properties of cement composites filled with expanded polystyrene (EPS), the energy conservation law in electromagnetic fields has been proposed. In Chapter 8, we present the design philosophy of the pyramid absorbers widely used in most anechoic chambers. And also, we propose a new kind of resonant absorber based on carbon-coated EPS and discuss its absorbing mechanism in detail.

To give a more intuitive understanding of the materials in each chapter, we give a full list of references related to the main contents in that chapter. The readers can refer to these lists to get more information.

I would like, first, to thank gratefully my colleagues and students for their assistance and contribution to this book. These include Prof. Liu, Prof. Guan, Huifang Pang, Wei Liu, Yahong Zhang, Jin Liu, Qun Xi, LuLu Song, Gaihua He, Liyang Chen, Lidong Liu, Baoyi Li, Shuping Lv, Guangli Wu, Shuchao Gu, Jia Zhang, Hui Jin, He Ma, Zhuo Liu, Ming Wen, Long Wang, Junlei Chen, Jizhu Du, and Xiaodong Chen, who provided excellent expertise and support for the language and pictures, especially Prof. Guan, who gave many good suggestions on the design and polishing of the content. I am also deeply indebted to my family for their patience, encouragement, and support and for contributing so much to my confidence in dealing with the writing of this book.

Yuping Duan
May 2016