The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached.

Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.

Sergey Kravchenko is professor of physics at Northeastern University, Boston, USA. He graduated from Moscow Institute of Physics and Technology, Russia, in 1982 and obtained his PhD from the Institute of Solid State Physics, Chernogolovka, Russia, in 1988. His research focuses on the low-temperature (millikelvin) properties of low-dimensional disordered systems by means of transport, capacitance, magnetization, and thermopower measurements. His primary interest is to understand the nature of the metallic state and the metal–insulator transition in strongly interacting 2D electron systems, discovered by him and his collaborators, and to determine its phase diagram. This discovery was listed among the 50 main discoveries in mesoscopic physics of the past century on the American Physical Society timeline in 1999 ("A Century of Mesoscopic Physics: 1899–1999").
Strongly Correlated Electrons in Two Dimensions
Strongly Correlated Electrons in Two Dimensions

edited by
Sergey Kravchenko
Contents

Preface ix

1 Wigner–Mott Quantum Criticality: From 2D-MIT to 3He and Mott Organics 1
 V. Dobrosavljević and D. Tanasković
 1.1 MIT in the Strong Correlation Era: The Mystery and the Mystique 2
 1.2 Phenomenology of 2D-MIT in the Ultraclean Limit 4
 1.2.1 Finite-Temperature Transport 5
 1.2.2 Scaling Phenomenology and Its Interpretation 6
 1.2.3 Resistivity Maxima in the Metallic Phase 9
 1.2.4 Effect of Parallel Magnetic Fields 11
 1.2.5 Thermodynamic Response 13
 1.3 Comparison to Conventional Mott Systems 15
 1.3.1 Mott Transition in 3He Monolayers on Graphite 16
 1.3.2 Mott Organics 18
 1.4 Theory of Interaction-Driven MITs 22
 1.4.1 The DMFT Approach 23
 1.4.2 The Mott Transition 25
 1.4.3 Correlated Metallic State 27
 1.4.4 Effective Mass Enhancement 28
 1.4.5 Resistivity Maxima 31
 1.4.6 Quantum Criticality and Scaling 34
 1.4.6.1 Is Wigner crystallization a Mott transition in disguise? 37
 1.5 Conclusions 41
Contents

2 Metal–Insulator Transition in a Strongly Correlated Two-Dimensional Electron System 47
A. A. Shashkin and S. V. Kravchenko
2.1 Strongly and Weakly Interacting 2D Electron Systems 47
2.2 Zero-Field Metal–Insulator Transition 50
2.3 Possible Ferromagnetic Transition 53
2.4 Effective Mass or g-Factor? 56

3 Transport in a Two-Dimensional Disordered Electron Liquid with Isospin Degrees of Freedom 65
Igor S. Burmistrov
3.1 Introduction 65
3.2 Nonlinear \(\sigma \)-Model 74
3.2.1 Nonlinear \(\sigma \)-Model Action 74
3.2.2 Physical Observables 77
3.2.3 One-Loop Renormalization 78
3.2.3.1 Perturbation theory 78
3.2.3.2 One-loop renormalization of physical observables 79
3.2.4 One-Loop RG Equations 81
3.2.5 Conductivity Corrections due to Small Symmetry-Breaking Terms 82
3.2.6 Dephasing Time 83
3.3 Spin–Valley Interplay in a 2D Disordered Electron Liquid 84
3.3.1 Introduction 84
3.3.2 Microscopic Hamiltonian 84
3.3.3 \(SU(4) \) Symmetric Case 87
3.3.4 \(SU(2) \times SU(2) \) Case 88
3.3.5 Completely Symmetry-Broken Case 90
3.3.6 Discussion and Comparison with Experiments 93
3.4 2D Disordered Electron Liquid in the Double-Quantum-Well Heterostructure 98
3.4.1 Introduction 98
3.4.2 Microscopic Hamiltonian 98
3.4.2.1 Estimates for interaction parameters 102
3.4.3 One-Loop RG Equations 103
3.4.4 Dephasing Time 105
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.5</td>
<td>Discussion and Comparison with Experiments</td>
<td>106</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusions</td>
<td>109</td>
</tr>
<tr>
<td>A.1</td>
<td>Appendix</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>Electron Transport Near the 2D Mott Transition</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Tetsuya Furukawa and Kazushi Kanoda</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Mott Transition</td>
<td>117</td>
</tr>
<tr>
<td>4.2</td>
<td>Theoretical Investigations of the Mott Transition</td>
<td>119</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Dynamical Mean Field Theory</td>
<td>119</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Quantum Criticality of the Mott Transition</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>Organic Materials: Model Systems of the Mott Physics</td>
<td>123</td>
</tr>
<tr>
<td>4.4</td>
<td>Temperature–Pressure Phase Diagram</td>
<td>125</td>
</tr>
<tr>
<td>4.5</td>
<td>Critical Phenomena around the Critical End Point</td>
<td>127</td>
</tr>
<tr>
<td>4.6</td>
<td>Quantum Criticality at Intermediate Temperatures</td>
<td>131</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Resistivity in the Crossover Region</td>
<td>131</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Scaling Analysis</td>
<td>134</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Comparison of the Experimental Results with the DMFT Predictions</td>
<td>138</td>
</tr>
<tr>
<td>4.7</td>
<td>Summary</td>
<td>140</td>
</tr>
<tr>
<td>5</td>
<td>Metal–Insulator Transition in Correlated Two-Dimensional Systems with Disorder</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Dragana Popović</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>2D Metal–Insulator Transition as a Quantum Phase Transition</td>
<td>145</td>
</tr>
<tr>
<td>5.2</td>
<td>Critical Behavior of Conductivity</td>
<td>149</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Role of Disorder</td>
<td>150</td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>Low-disorder samples</td>
<td>150</td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>Special disorder: local magnetic moments</td>
<td>154</td>
</tr>
<tr>
<td>5.2.1.3</td>
<td>High-disorder samples</td>
<td>157</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Effects of the Range of Electron–Electron Interactions</td>
<td>161</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Effects of a Magnetic Field</td>
<td>165</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Possible Universality Classes of the 2D Metal–Insulator Transition</td>
<td>167</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Metal–Insulator Transition in Novel 2D Materials</td>
<td>169</td>
</tr>
</tbody>
</table>
Contents

5.3 Charge Dynamics Near the 2D Metal–Insulator Transition and the Nature of the Insulating State 171
 5.3.1 High-Disorder 2D Electron Systems 173
 5.3.2 Low-Disorder 2D Electron Systems 177

5.4 Conductor–Insulator Transition and Charge Dynamics in Quasi-2D Strongly Correlated Systems 178

5.5 Conclusions 182

6 Microscopic Theory of a Strongly Correlated Two-Dimensional Electron Gas 189
 M. V. Zverev and V. A. Khodel
 6.1 Introduction 189
 6.2 Ab initio Evaluation of the Ground-State Energy and Response Function of a 2D Electron Gas 191
 6.3 Ab initio Evaluation of Single-Particle Excitations of a 2D Electron Gas 196
 6.4 Disappearance of de Haas–van Alphen and Shubnikov–de Haas Magnetic Oscillations in MOSFETs as the Precursor of a Topological Rearrangement of the Landau State 203
 6.5 Conclusion 215

Index 219
Properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. Two-dimensional (2D) electron systems can be realized on semiconductor surfaces (metal-insulator-semiconductor structures, heterostructures, quantum wells); other examples include electrons on a surface of liquid helium or a single layer of carbon atoms (graphene). In some of these systems, Coulomb repulsion between electrons is small compared to the kinetic energy of electrons; such systems can be well described by Fermi liquid theory introduced by Landau in 1956. However, when the energy associated with the Coulomb interactions becomes larger (sometimes by orders of magnitude or even more) than the Fermi energy, perturbation theories fail and one may expect novel states of matter to form.

In a zero magnetic field, idealized (noninteracting) 2D electrons were predicted by the “Gang of Four” (Abrahams, Anderson, Licciardello, and Ramakrishnan, 1979) to become localized in the limit of zero temperature, no matter how weak the disorder in the system. Weak interactions between electrons are expected to contribute to the localization (Altshuler, Aronov, and Lee, 1980). Therefore, it came as a surprise when the metallic (delocalized) state and the metal–insulator transition were observed in a 2D electron system formed in low-disordered silicon transistors (Kravchenko et al., 1994). Since then, a tremendous effort has been made, in both theory and experiment, to produce an adequate understanding of the situation; however, a consensus has still not been reached.

In the limit of very strong interactions, electrons are supposed to crystalize into a lattice to minimize their repulsion energy (Wigner, 1934). A classical Wigner crystal has indeed been realized for electrons on the surface of liquid helium. Although indications
exist that Wigner crystallization also occurs in very dilute electron systems on semiconductor surfaces (where the crystal should be quantum), the “smoking-gun evidence” has never been obtained.

These are just two examples of many outstanding unsolved problems in the physics of strong correlations in two dimensions.

This book, intended for advanced graduate students and researchers entering the field, contains six chapters. In Chapter 1, a review is given on the recent theoretical work exploring quantum criticality of Mott and Wigner–Mott transitions. The authors argue that the most puzzling features of the experiments find natural and physically transparent interpretations based on this perspective.

Chapter 2 is devoted to experiments on very clean and very dilute 2D electron systems. Experimental results on the metal–insulator transition and related phenomena in such systems are discussed. Special attention is given to recent results for the strongly enhanced spin susceptibility, effective mass, and thermopower in low-disordered silicon transistors.

In Chapter 3, the author shows how spin and isospin degrees of freedom affect low-temperature transport in strongly interacting disordered 2D electron systems and explains experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems.

In Chapter 4, recent experimental studies on the Mott transitions of layered organic materials are reviewed with an emphasis on quantum-critical transport. The authors show that in the vicinity of the Mott transition, different kinds of phases emerge, such as antiferromagnetic Mott insulators, quantum spin liquids, Fermi liquids, and unconventional superconductors.

Chapter 5 is a review of experimental results obtained on 2D electron systems with different levels of disorder. In particular, the author shows that sufficiently strong disorder changes the nature of the metal–insulator transition. Comprehensive studies of the charge dynamics are also reviewed, describing evidence that the metal–insulator transition in a 2D electron system in silicon should be viewed as the melting of the Coulomb glass.

Finally, in Chapter 6, a microscopic theory of a strongly correlated 2D electron gas is presented. The authors suggest an explanation of the divergence of the effective electron mass experimentally
observed in silicon-based 2D structures. Possible condensation of fermions in 2D electron systems, closely related to the condensation of bosons in superconductors or in superfluids, is also discussed.

I hope that this book will stimulate further developments in the physics of strongly correlated electrons in two dimensions and lead to many discoveries of yet unforeseen new physics.

Sergey Kravchenko