This book is the first text to provide a comprehensive assessment of the application of fundamental principles of dissolution and drug release testing to poorly soluble compounds and formulations. Such drug products are, vis-à-vis their physical and chemical properties, inherently incompatible with aqueous dissolution. However, dissolution methods are required for product development and selection, as well as for the fulfillment of regulatory obligations with respect to biopharmaceutical assessment and product quality understanding. The percentage of poorly soluble drugs, defined in classes 2 and 4 of the Biopharmaceutics Classification System (BCS), has significantly increased in the modern pharmaceutical development pipeline. This book provides a thorough exposition of general method development strategies for such drugs, including instrumentation and media selection, the use of compendial and non-compendial techniques in product development, and phase-appropriate approaches to dissolution development.

Emerging topics in the field of dissolution are also discussed, including biorelevant and biphasic dissolution, the use on enzymes in dissolution testing, dissolution of suspensions, and drug release of non-oral products. Of particular interest to the industrial pharmaceutical professional, a brief overview of the formulation and solubilization techniques employed in the development of BCS class 2 and 4 drugs to overcome solubility challenges is provided and is complemented by a collection of chapters that survey the approaches and considerations in developing dissolution methodologies for enabling drug delivery technologies, including nanosuspensions, lipid-based formulations, and stabilized amorphous drug formulations.

Gregory K. Webster is a senior principal research scientist with AbbVie Inc.'s Global Analytical Research and Development. He obtained his BS in chemistry from St. Xavier College, USA, MS in analytical chemistry from Governors State University, USA, and PhD in analytical chemistry from Northern Illinois University. Dr. Webster’s industrial career spans an employment history with several major pharmaceutical companies. His first book with Pan Stanford Publishing, Supercritical Fluid Chromatography: Advances and Applications in Pharmaceutical Analysis, was published in 2014.

J. Derek Jackson is director of Analytical Development at Flexion Therapeutics Inc, USA. He earned his BS and MA in chemistry from the College of William and Mary in Virginia. Derek has been engaged in all stages of pharmaceutical discovery, research, and development for 20 years, in both large pharma and small-to-midcap biotech companies.

Robert G. Bell is president of Drug and Biotechnology Development LLC, USA, a consultancy to the pharmaceutical industry and academia for biological, drug, and device development. He received his education from the University of Florida and has worked with the pharmaceutical industry for over 30 years. Dr. Bell is adjunct faculty at Virginia Commonwealth University and the University of Florida College of Pharmacy and a member of the Council of Experts, General Chapters—Biological Analysis for United States Pharmacopeia.
Poorly Soluble Drugs
Pan Stanford Series on Pharmaceutical Analysis

Gregory K. Webster
Chief Editor

J. Derek Jackson and Robert G. Bell
Editors

Titles in the Series

Published

Vol. 1
Poorly Soluble Drugs: Solution and Drug Release
Gregory K. Webster, J. Derek Jackson, and Robert G. Bell, eds.
2017
978-981-4745-45-1 (Hardcover)
978-981-4745-46-8 (eBook)

Forthcoming

Vol. 2
Chromatographic Method Development
Gregory K. Webster and Laila Kott, eds.
2018
Poorly Soluble Drugs
Dissolution and Drug Release

edited by
Gregory K. Webster
J. Derek Jackson
Robert G. Bell
Contents

Foreword xxii

1 The Modern Pharmaceutical Development Challenge:
 BCS Class II and IV Drugs 1
 Gregory K. Webster, Robert G. Bell, and J. Derek Jackson
 1.1 Introduction 1
 1.2 Changing Drug Emphasis 2
 1.2.1 BCS Classification System 3
 1.2.2 Poorly Soluble Drugs 4
 1.3 The Dissolution Market 5
 1.4 Dissolution and Drug Release in the Pharmaceutical Industry 6
 1.4.1 Solubility Determinations for Pharmaceutical API 7
 1.4.2 Use of Surfactants in Dissolution Testing 7
 1.4.3 Intrinsic Dissolution Evaluation of Poorly Soluble Drugs 7
 1.4.4 Strategies for Oral Delivery of Poorly Soluble Drugs 8
 1.4.5 A Staged Approach to Pharmaceutical Dissolution Testing 9
 1.4.6 Development and Application of in vitro Two-Phase Dissolution Method for Poorly Water-Soluble Drugs 9
 1.4.7 Use of Apparatus 3 in Dissolution Testing of Poorly Soluble Drug Formulations 10
 1.4.8 Use of Apparatus 4 in Dissolution Testing of Poorly Soluble Drug Formulations 10
1.4.9 Dissolution of Nanoparticle Drug Formulations 11
1.4.10 Dissolution of Lipid-Based Drug Formulations 12
1.4.11 Dissolution of Stabilized Amorphous Drug Formulations 12
1.4.12 Dissolution of Pharmaceutical Suspensions 13
1.4.13 Biorelevant Dissolution 13
1.4.14 Clinically Relevant Dissolution for Low-Solubility Immediate-Release Products 14
1.4.15 Method Validation and QbD for Dissolution Testing of BCS Class II/IV Products 15
1.4.16 Regulatory Considerations in Drug Release Testing of BCS Class II/IV Products 15
1.4.17 Dissolution of Capsule-Based Formulations 16
1.4.18 Emerging and Non-compendial Drug Release Techniques 17

2 Solubility Determinations for Pharmaceutical API 19
Kofi Asare-Addo and Barbara R. Conway
2.1 Introduction 19
2.2 Drug Solubility Assay Development 21
 2.2.1 Media for Solubility Studies 26
 2.2.1.1 Biorelevant media 26
 2.2.1.2 Organic solvents (DMSO) 29
 2.2.1.3 Detection methods 31
2.3 Drug Solubility Determination 33
 2.3.1 Shake-Flask Method 33
 2.3.2 Miniaturized Shake-Flask Method 38
 2.3.2.1 Sample preparation and analysis 38
 2.3.3 Potentiometric Titration Methods 42
 2.3.4 High-throughput Solubility Determinations 47
2.4 In silico Predictions 55
2.5 Other Physicochemical Determinations 58
 2.5.1 pKₐ 58
 2.5.2 Lipophilicity 60
2.6 Summary 61
3 Use of Surfactants in Dissolution Testing 85
Amit Gupta
3.1 Introduction 85
3.2 Surfactants 86
 3.2.1 Use of Surfactants in Dissolution Media Development 87
 3.2.2 Types of Surfactants in Dissolution Development 88
 3.2.3 Surfactant Concentration in Dissolution Media 88
 3.2.4 Other Non-surfactant Media Adjuvants 89
3.3 Impact of Surfactants on Dissolved Gases 90
3.4 Case Studies 93
 3.4.1 Roflumilast 94
 3.4.2 Fingolimod 95
 3.4.3 Lamotrigine 96
 3.4.4 Tacrolimus 98
 3.4.5 Amiodarone 99
 3.4.6 Enzyme Addition 100
3.5 Regulatory Concerns 101

4 Intrinsic Dissolution Evaluation of Poorly Soluble Drugs 105
Michele Georges Issa and Humberto Gomes Ferraz
4.1 Introduction 105
4.2 Apparatuses Used in Evaluating the Intrinsic Dissolution Rate 107
 4.2.1 Rotating Disk System 107
 4.2.2 Fixed Disk System 107
 4.2.3 Flow Cell: Dissolution by UV Imaging 109
4.3 Calculating the Intrinsic Dissolution Rate (IDR) 110
4.4 Evaluation of Intrinsic Dissolution of Poorly Soluble Drugs 112
 4.5 Development of an Intrinsic Dissolution Test 114
 4.5.1 Test Variables 114
 4.5.1.1 Sample 114
 4.5.1.2 Compaction pressure 116
 4.5.1.3 Dissolution medium 117
4.5.1.4 Stirring speed 117
4.5.2 Design of Experiments (DOE) 117
4.6 Conclusion 118

5 Oral Delivery of Poorly Soluble Drugs 125
Dev Prasad, Akash Jain, and Sudhakar Garad
5.1 Introduction 126
5.2 Oral Delivery 127
 5.2.1 Physicochemical Properties 128
 5.2.1.1 Ionization 128
 5.2.1.2 Aqueous solubility 129
 5.2.1.3 Lipophilicity, permeability, and absorption 131
 5.2.1.4 Metabolism consideration 133
 5.2.2 Solid-State Properties 134
 5.2.2.1 Morphology 135
 5.2.2.2 Hygroscopicity 136
 5.2.2.3 Particle size, shape, and surface area 137
 5.2.3 Biopharmaceutics and Developability Assessment 138
5.3 Enabling Formulation Approaches for Poorly Soluble Drugs 140
 5.3.1 Conventional Approaches 140
 5.3.1.1 pH adjustment and buffers 140
 5.3.1.2 Co-solvents and surfactants 142
 5.3.1.3 Cyclodextrins 144
 5.3.2 Salts and Co-crystals 147
 5.3.2.1 Salts 147
 5.3.2.2 Co-crystals 151
 5.3.2.3 Identifying the right salt or co-crystal 152
 5.3.3 Particle Size Reduction 153
 5.3.4 Amorphous Form and Solid Dispersion 155
 5.3.5 Lipid-Based Formulations 161
 5.3.5.1 Oil/lipid solutions 161
 5.3.5.2 Emulsions 161
 5.3.5.3 Self-emulsifying systems 163
6 A Staged Approach to Pharmaceutical Dissolution Testing 187

Gregory K. Webster, Xi Shao, and Paul D. Curry, Jr.

6.1 Introduction 187

6.2 Dissolution at Each Stage of Drug Development 189

6.2.1 Pilot Formulation Development 189

6.2.2 Development Formulations: Phase 1B/2A 192

6.2.3 Development Formulations: Phase 2B 196

6.2.4 Final Formulation Development: Phase 3 199

6.2.5 In vitro/in vivo Correlation 203

6.3 Conclusion 206
7 Development and Application of in vitro Two-Phase Dissolution Method for Poorly Water-Soluble Drugs 209

Ping Gao, Yi Shi, and Jonathan M. Miller

7.1 Introduction 209

7.2 Development and Applications of Two-Phase Dissolution Test 211

7.2.1 Overview of Two-Phase Dissolution-Partition Method 211

7.2.2 Experimental 214

7.2.2.1 Apparatus 214

7.2.2.2 Selection of aqueous media 215

7.2.2.3 Selection of organic phase 216

7.2.3 Case Studies with Emphasis on IVIVR 216

7.2.4 Case Studies Assessing Supersaturation and IVIVR 218

7.3 Theoretical Modeling of Drug Dissolution and Transfer between Two Phases 226

7.3.1 Grassi Model 227

7.3.2 Amidon Model 228

7.4 Conclusions 230

8 The Use of Apparatus 3 in Dissolution Testing of Poorly Soluble Drug Formulations 235

G. Bryan Crist

8.1 Background of the Reciprocating Cylinder Apparatus 235

8.2 Operational Overview 238

8.3 Typical Applications for Poorly Soluble Compounds 242

8.3.1 Modifications to the Reciprocating Cylinder 248

8.4 Reciprocating Cylinder Apparatus Qualification 249

8.5 Summary 252

9 Use of Apparatus 4 in Dissolution Testing, Including Sparingly and Poorly Soluble Drugs 255

Rajan Jog, Geoffrey N. Grove, and Diane J. Burgess

9.1 Introduction 255
9.2 Pharmacopeial Considerations 259
9.3 FDA Considerations 260
9.4 System Configuration 261
 9.4.1 Flow Cell Selection and Design 262
 9.4.2 Pump Selection 267
 9.4.3 Flow-Through Cell and Dissolution Testing of Different Dosage Forms 268
9.5 Conclusions 295

10 Dissolution of Nanoparticle Drug Formulations 301
 John Bullock
 10.1 Introduction 301
 10.2 Theoretical Considerations for the Dissolution of Nanoparticles 304
 10.2.1 Nanoparticle Solubility as a Function of Size 305
 10.2.2 Nanoparticle Dissolution Kinetics as a Function of Surface Area 306
 10.2.3 Stagnant Diffusion Layer Thickness as a Function of Nanoparticle Size 307
 10.2.4 Advanced Models of Nanoparticle Dissolution Kinetics 309
 10.2.5 Solid State (Crystalline, Amorphous, Disordered) Influences on Dissolution Properties 309
 10.2.6 Supersaturation Potential and Impact on Dissolution Profile 312
 10.2.7 Summary 313
 10.3 General Considerations for Dissolution Methods for Nanoparticle Formulations 313
 10.4 Media Considerations for Dissolution Testing of Nanoparticles 314
 10.4.1 Conventional Compendial Media 315
 10.4.2 Surfactant-Based Media 315
 10.4.3 Two-Stage Media 317
 10.4.4 Biorelevant Media 319
 10.4.5 Sink versus Non-Sink Conditions 321
10.5 Instrumentation and Sampling Technique
Considerations 322
10.6 Sample, Separate, and Analyze 323
 10.6.1 Filter Membrane Material Selection 326
 10.6.2 Filter Pore Size Selection 326
 10.6.3 Filtration Timing 329
 10.6.4 Centrifugation 330
10.7 Membrane Diffusion (Dialysis) Analysis 330
10.8 In situ Analysis 333
 10.8.1 In situ Fiber Optic UV Analysis 334
 10.8.2 In situ Potentiometric Analysis 335
 10.8.3 In situ Turbidimetric Analysis 335
 10.8.4 In situ Electrochemical Analysis 336
 10.8.5 In situ Solution Calorimetry Analysis 336
 10.8.6 In situ Light-Scattering Analysis 337
10.9 Alternative in vitro Release Techniques 338
 10.9.1 Asymmetric Flow Field-Flow Fractionation with Multi-Angle Light Scattering 338
 10.9.2 Dissolution/Permeation System 339
 10.9.3 Nanoparticle Redispersibility 339
10.10 Future Developments 341

11 Dissolution of Lipid-Based Drug Formulations 353
Stephen M. Cafiero
11.1 Introduction 353
11.2 Lipid-Based Formulations 354
11.3 Manufacturing/Packaging of LBDDS and Potential for Dissolution Problems 359
 11.3.1 Cross-linking 360
11.4 Dissolution Development, Validation, and Testing Considerations Dissolution Development, Validation, and Testing Considerations: USP <1094> General Chapter 362
 11.4.1 Apparatus 362
 11.4.2 Media 363
 11.4.3 Surfactants 364
11.4.4 Enzymes 366
11.4.5 Sampling 369
11.4.6 Analysis 370
11.4.7 Validation 371

11.5 Discriminatory Capability Assessments 373
11.5.1 Changes to the Formulation 373
11.5.2 Indication of Product Stability via the Dissolution Method 376

11.6 Setting Specifications 377

11.7 Dissolution-Related Testing 379
11.7.1 Rupture Test 379
11.7.2 Droplet Size Testing 382
11.7.3 A Simple Test to Verify Drug Residence in an Emulsion 385

11.8 Summary 388

12 Dissolution of Stabilized Amorphous Drug Formulations 393

Justin R. Hughey

12.1 Introduction 393

12.2 Dissolution Considerations 396
12.2.1 Dissolution at Sink at Non-sink Conditions 397
12.2.2 Media Selection 398
12.2.3 Speciation at Non-sink Conditions 399

12.3 Dissolution Case Studies 400
12.3.1 Carrier Screening Methodologies 400
12.3.1.1 Co-solvent precipitation 400
12.3.1.2 Amorphous film dissolution 401
12.3.2 Dissolution of Drug Product Intermediate and Solid Dosage Forms 404
12.3.3 Methodologies to Determine Free Drug 406
12.3.3.1 Free drug isolation by partitioning into organic solvent 407
12.3.3.2 Free drug isolation by membrane-partitioning 409
12.3.3.3 Free drug isolation by ultracentrifuge 412

12.4 Conclusion 413
13 Dissolution of Pharmaceutical Suspensions
Bevery Nickerson, Michele Xuemei Guo, Kenneth J. Norris, and Ling Zhang

13.1 Introduction 419

13.2 Types of Oral Suspension Formulations 420
 13.2.1 Oral Suspensions 420
 13.2.2 Extemporaneous Preparations 421
 13.2.3 Nanosuspensions 422
 13.2.4 Suspension in Gelatin Capsules 423

13.3 Dissolution Mechanisms for Suspensions 424

13.4 Properties That Affect Dissolution of Suspensions 425
 13.4.1 API Particle Size 425
 13.4.2 API Crystalline Form 428
 13.4.3 Viscosity 430

13.5 Dissolution Method Development for Suspensions for Oral Administration 432
 13.5.1 Selection of Apparatus and Agitation Speed 432
 13.5.2 Media Selection (pH, Surfactant) 436
 13.5.3 Sample Preparation and Introduction into the Dissolution Vessel 437

13.6 Additional Dissolution Method Development Considerations for Suspension Filled Gelatin Capsules 438

13.7 Compendial Dissolution Methods for Suspensions 441

13.8 Non-compendial Dissolution Methods and Alternative Methods for Suspensions 446

13.9 Summary 447

14 Dissolution Testing of Poorly Soluble Drugs: “Biorelevant Dissolution”
Mark McAllister and Irena Tomaszewska

14.1 Introduction 455

14.2 Evolution of Biorelevant Media 457
 14.2.1 Simulating the Gastric Environment 457
 14.2.1.1 Fasted state media 458
 14.2.1.2 Fed state gastric media 460
 14.2.2 Simulating the Small Intestinal Environment 462
 14.2.3 Simulating the Colonic Environment 470
14.2.4 Biorelevant Volumes 472
14.2.5 Biorelevant Hydrodynamics 475
14.3 Prediction of Food Effects 479
 14.3.1 Impact of Media Selection 480
 14.3.2 Impact of Methodology and Apparatus 482
 14.3.3 Impact of Biomodeling/in silico Tools 483
14.4 Conclusion 496

15 Clinically Relevant Dissolution for Low-Solubility Immediate-Release Products 511
 Paul A. Dickinson, Talia Flanagan, David Holt, and Paul W. Stott

15.1 Introduction 511
 15.1.1 Benefits of Developing a Clinically Relevant Dissolution Method? 517
15.2 Step 1: Perform a Quality Risk Assessment (QRA) to Allow the Most Relevant Risk to in vivo Dissolution to Be Identified 519
 15.2.1 Assessment of Biopharmaceutics Risk 519
 15.2.1.1 Generic prior knowledge and literature precedent 521
 15.2.1.2 Existing clinical data 522
 15.2.1.3 Dissolution testing in biorelevant media and apparatus 523
 15.2.2 Assessment of Drug Product Risk 524
15.3 Step 2: Develop Dissolution Test(s) with Physiological Relevance that is Most Likely to Identify Changes in Dissolution 528
15.4 Step 3: Understand the Importance of Changes to these Most Relevant Manufacturing Variables on Clinical Quality 531
15.5 Step 4: Establish the Dissolution Limit which Ensures Clinical Quality (i.e., no Effect by Changes) 535
15.6 Step 5: Ensure Dissolution within Established Limits to Ensure that Clinical Quality is used to Define the Product Control Strategy 536
 15.6.1 The Role of Multivariate Manufacturing Process Investigations in Establishing a Control Strategy 536
Contents

15.6.2 Setting an Appropriate Dissolution Specification as Part of the Control Strategy 538

15.7 Further Examples of the Application of the 5-Step Approach

15.7.1 Example 2: A BCS Class 4 Drug with Reasonable Permeability and Poor Aqueous Solubility

15.7.1.1 Step 1: Perform a quality risk assessment (QRA) allowing the most relevant risk to in vivo dissolution to be identified 544

15.7.1.2 Step 2: Develop dissolution test(s) with physiological relevance that is most likely to identify changes in dissolution 544

15.7.1.3 Step 3: Understand the importance of changes to these most relevant manufacturing variables on clinical quality 544

15.7.1.4 Step 4: Establish the dissolution limit which ensures clinical quality 544

15.7.1.5 Step 5: Ensure dissolution within established limits to ensure that clinical quality is used to define the product control strategy 545

15.7.2 Example 3: A BCS Class 4 Drug Near the Boundary of the High Solubility and Permeability Thresholds

15.7.2.1 Step 1: Perform a quality risk assessment (QRA) allowing the most relevant risk to in vivo dissolution to be identified 546

15.7.2.2 Step 2: Develop dissolution test(s) with physiological relevance that is most likely to identify changes in dissolution 546
15.7.2.3 Step 3: Understand the importance of changes to these most relevant manufacturing variables on clinical quality 546
15.7.2.4 Step 4: Establish the dissolution limit which ensures clinical quality 546
15.7.2.5 Step 5: Ensure dissolution within established limits to ensure that clinical quality is used to define the product control strategy 547

15.8 Summary 547

16 The QbD Approach to Method Development and Validation for Dissolution Testing 553
Alger D. Salt
16.1 Introduction 553
16.2 Stages of QbD 554
16.3 Design Intent 554
16.4 Design Selection 556
16.5 Control Definition 557
 16.5.1 Robustness Assessment 559
 16.5.2 Ruggedness Assessment 561
 16.5.3 Control Definition Table 564
16.6 Control Verification 566
16.7 Continuous Improvement 566
16.8 A Case Study 567
16.9 Why Implement QbD for Analytical Methods? 570
16.10 Summary 571

17 Regulatory Considerations in Dissolution and Drug Release of BCS Class II and IV Compounds 573
Robert G. Bell and Laila Kott
17.1 Introduction: What Are the Regulatory Implications That the Pharmaceutical Scientists Must Face When Developing Dissolution Methods for Poorly Soluble Drugs? 573
17.2 Classification Systems: BCS versus BDDCS versus DCS

17.2.1 Overview of the Three Classification Systems

- **Biopharmaceutics Classification System (BCS)**: 579
- **Biopharmaceutics Drug Disposition Classification System (BDDCS)**: 583
- **Developability Classification System (DCS)**: 585

17.3 Biorelevant Dissolution Methods versus Standard Quality Dissolution Methods

17.3.1 Setting Dissolution Specifications
17.3.2 Stage 1, Stage 2, Stage 3, or Level 1, Level 2, Level 3 Testing
17.3.3 Considering Specifications Using Biorelevant Methods

17.4 Emerging Regulatory Topics

17.5 Relevant Guidelines

18 Dissolution of Liquid-Filled Capsules Based Formulations

18.1 Introduction

- **Overview of Liquid-Filled Capsules**: 606

18.2 Dissolution of Liquid-Filled Capsules

- **Dissolution of Capsule Shell**
 - **Mechanism of gelatin cross-linking**: 615
 - **Sources of aldehyde impurities**: 616
 - **Influence of proteolytic enzymes on cross-linked gelatin**: 618
- **Dissolution of Capsule Fill**
 - **Use of surfactants in dissolution media**: 623
 - **Challenges with use of surfactants in dissolution media**: 624
18.2.3 Factors Influencing Dissolution Stability of Liquid-filled Capsules 626

18.3 Development of Dissolution Methods 627
18.3.1 Development of Dissolution Medium 627
18.3.2 Selection of Dissolution Apparatus 629
18.3.3 Alternate Dissolution Testing Procedures 631

18.4 Dissolution Procedures for IVIVC and IVIVR 633
18.4.1 Lipolysis and Its Effects on Dissolution and Absorption of Compounds 634
18.4.2 Application of in vivo Processes to in vitro Dissolution Procedures 636
18.4.2.1 IVIVC and IVIVR using in vitro lipolysis models 636

18.5 Summary 639

19 Current and Emerging Non-compendial Methods for Dissolution Testing 661
Namita Tipnis and Diane J. Burgess

19.1 Introduction 662
19.1.1 Need for Non-compendial Tests 663

19.2 Overview of Compendial Methods for in vitro Release and Their Non-compendial Modifications 663
19.2.1 USP Apparatus 1, Rotating Basket, and USP Apparatus 2, Rotating Paddle 663
19.2.2 USP Apparatus 3: Reciprocating Cylinder 664
19.2.3 USP Apparatus 4: Flow-Through Cell 665
19.2.4 USP Apparatus 5, Paddle over Disk, and USP Apparatus 6, Rotating Cylinder 667
19.2.5 USP Apparatus 7: Reciprocating Holder 668
19.2.6 Other Non-compendial Tests 668
19.2.6.1 Rotating bottle apparatus 668
19.2.6.2 Biphasic dissolution method 668
19.2.6.3 Dissolution models simulating GI physical stress forces 670

19.3 Current Non-compendial Tests for Special Dosage Forms 670
19.3.1 Chewing Gums and Tablets 671
19.3.2 Soft Gelatin Capsules 671
Contents

19.3.3 Buccal and Sublingual Tablets 672
19.3.4 Semisolid Dosage Forms 674
19.3.5 Poorly Soluble Compounds 675
19.3.6 Controlled-Release Parenterals 675

19.4 Detection Techniques for Dissolution Testing 677
19.4.1 UV Imaging and Raman Spectroscopy 677
19.4.2 FTIR-ATR Spectroscopy 678
19.4.3 UV Fiber Optics 679

19.5 Conclusions 679

Index 687
Foreword

Roughly twenty years ago, it became clear that drug product development had entered a new era of difficulty with the increased throughput of therapeutically effective but poorly soluble drug candidates. Gone are the days when all drug candidates were rapidly dissolving and absorbing drugs that were relatively easy to formulate and even easier to test. Now the development of an in vitro method for poorly soluble drugs is not boring. Rather, it’s a stimulating endeavor.

High-throughput screening has contributed to the invention and discovery of many new poorly soluble molecules. This book, *Poorly Soluble Drugs: Dissolution and Drug Release*, is most timely as the authors are up to the challenge of sharing the knowledge and tools to tackle the in vitro testing and manufacturing of these products. This work is unique in that it has provided the linkage between testing and formulating the products with equal importance given to each aspect.

In vitro testing of poorly soluble drug products is especially challenging and important since dissolution is the rate-limiting step to drug absorption and exposure. The path forward is clear: methods must be able to take advantage of this characteristic by providing meaningful elucidation of the release rate or, in some cases, the actual release mechanism, and hence giving critical clinically relevant information.

Poorly soluble drugs require special attention during formulation and manufacturing to enhance the effectiveness of the drug through methods as simple as reducing particle size to the much more complex areas of formulation manipulation and engineering technology to increase in vivo concentrations and adsorption.

The practical matter is that the demands from regulators, the globalization of pharmaceuticals, and the competitive arena of
market share drive the need to quickly educate and strengthen the knowledge of scientists working on these products. This book is quite essential to this effort.

The development of clinically relevant dissolution methods for drug products with limited water solubility has been a challenge for scientists in the drug industry as well as the regulatory agencies. The trend has started with the powerful tools available through quality by design (QbD) to create a clinically relevant dissolution test. Designing robust dosage forms of poorly soluble actives employs a thorough understanding of the components, matrix, and variability, thus following QbD concepts. This book gives a thorough investigation of the role of QbD with poorly soluble dosage forms, including design of experiments (DOE).

Development scientists are tasked with making these compounds soluble in a medium that is foreign to the poorly soluble drug but is necessary for oral drug formulation absorption. Aqueous solubility is the primary gauge of the success or failure of a drug and drug product. Solubility and dissolution performance in the gastrointestinal tract are critical for the bioavailability, and hence efficacy, of the product.

There are some emerging topics that are starting to acquire additional in-depth understanding—in particular, topics such as sink versus non-sink conditions in the dissolution method, contribution of solid-state properties, the chemistry of surfactants, in silico modeling, dose dumping, and capsule properties. The chapters in this book give these and other new topics well-referenced and refreshingly up-to-date attention. The work in this book bridges with established art and then builds links to, in some cases, entirely new directions.

The authors are from industry and academia, giving a well-rounded approach to this unique topic that has not been treated in book form to date. The subject is treated well beyond current guidances and USP chapters, a step much further than the status quo. I know the authors personally or by reputation, and they are experts in their areas. Many have a long history of direct involvement with the in vitro release test from the simpler testing equipment and methods to more complex and in some cases closer to the in vivo condition.
In vitro testing shows that the product is dissolved and therefore available for absorption and therapeutic effect thus linking what occurs in the patient's body to the efficacy of the product. The FDA and USP have emphasized the dissolution test for this reason as a proof that a commercial product on the market for many years will still be efficacious if it passes that test developed with the biobatch formulation. Hence the push to improve and make more robust the dissolution methods to link to in vivo performance. A way to forecast the in vivo performance is by making the dissolution test conditions as close to in vivo conditions as is possible. Approaches to assist the analyst in developing a sensitive method to characterize the release rate are explored thoroughly in this book along with the topics of in vitro and in vivo correlations and relationships.

Historically, a defining moment for poorly soluble drugs is the Biopharmaceutics Classification System, where the poorly soluble drug was described and characterized with some clarity. At that time, it became apparent that biowaivers for poorly soluble dosage forms were in most part unobtainable. With the exception of in vitro and in vivo correlations, clinical studies seemed to always be necessary, and little has changed over the years in this regard. The book offers insight into the development of predictive dissolution methods. Furthermore, knowing that poorly soluble drugs are uniquely sensitive to the testing environment (e.g. equipment design, vibration and de-aeration) is helpful when interpreting dissolution results.

Formal education of the industry analyst may not be provided for this topic. Because developing methodology for poorly soluble drugs demands more resources and research, this work will be helpful to the analyst to work more efficiently and solve problems more rapidly with this new knowledge in hand.

I commend the authors for their very considerable effort in bringing out this valuable publication.

Vivian Gray
Managing Director
Dissolution Technologies, Inc.
Hockessin, DE, USA
October 2015